Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,30 @@ from transformers import AutoTokenizer
|
|
2 |
import gradio as gr
|
3 |
|
4 |
|
5 |
-
def load_tokenizers()
|
|
|
|
|
|
|
6 |
gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
7 |
gpt_neox_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
8 |
-
llama_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
9 |
falcon_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b")
|
10 |
phi2_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
|
11 |
t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl")
|
12 |
-
|
13 |
|
14 |
|
15 |
def tokenize(input_text):
|
|
|
|
|
|
|
16 |
gpt2_tokens = gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
17 |
gpt_neox_tokens = gpt_neox_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
18 |
-
llama_tokens = llama_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
19 |
falcon_tokens = falcon_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
20 |
phi2_tokens = phi2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
21 |
t5_tokens = t5_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
22 |
-
|
23 |
|
24 |
-
return f"GPT-2/GPT-J: {len(gpt2_tokens)}\nGPT-NeoX: {len(gpt_neox_tokens)}\
|
25 |
|
26 |
|
27 |
if __name__ == "__main__":
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
|
5 |
+
def load_tokenizers():
|
6 |
+
llama1_tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
|
7 |
+
llama2_tokenizer = AutoTokenizer.from_pretrained("TheBloke/Llama-2-7B-fp16")
|
8 |
+
mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
9 |
gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
10 |
gpt_neox_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
|
|
11 |
falcon_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b")
|
12 |
phi2_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
|
13 |
t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl")
|
14 |
+
|
15 |
|
16 |
|
17 |
def tokenize(input_text):
|
18 |
+
llama1_tokens = llama1_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
19 |
+
llama2_tokens = llama2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
20 |
+
mistral_tokens = mistral_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
21 |
gpt2_tokens = gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
22 |
gpt_neox_tokens = gpt_neox_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
|
|
23 |
falcon_tokens = falcon_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
24 |
phi2_tokens = phi2_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
25 |
t5_tokens = t5_tokenizer(input_text, add_special_tokens=True)["input_ids"]
|
26 |
+
|
27 |
|
28 |
+
return f"LLaMa-1: {len(llama1_tokens)}\nLLaMa-2: {len(llama2_tokens)}\nMistral: {len(mistral_tokens)}GPT-2/GPT-J: {len(gpt2_tokens)}\nGPT-NeoX: {len(gpt_neox_tokens)}\nFalcon: {len(falcon_tokens)}\nPhi-2: {len(phi2_tokens)}\nT5: {len(t5_tokens)}"
|
29 |
|
30 |
|
31 |
if __name__ == "__main__":
|