Spaces:
Runtime error
Runtime error
File size: 39,669 Bytes
7974733 82faed3 7974733 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
import tensorflow as tf
import gdown
from pathlib import Path
import os
tf_version = int(tf.__version__.split(".")[0])
if tf_version == 1:
from keras.models import Model
from keras.layers import Input, BatchNormalization, ZeroPadding2D, Conv2D, ReLU, MaxPool2D, Add, UpSampling2D, concatenate, Softmax
else:
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, BatchNormalization, ZeroPadding2D, Conv2D, ReLU, MaxPool2D, Add, UpSampling2D, concatenate, Softmax
def load_weights(model):
exact_file = "retinaface.h5"
model.load_weights(exact_file)
return model
def build_model():
data = Input(dtype=tf.float32, shape=(None, None, 3), name='data')
bn_data = BatchNormalization(epsilon=1.9999999494757503e-05, name='bn_data', trainable=False)(data)
conv0_pad = ZeroPadding2D(padding=tuple([3, 3]))(bn_data)
conv0 = Conv2D(filters = 64, kernel_size = (7, 7), name = 'conv0', strides = [2, 2], padding = 'VALID', use_bias = False)(conv0_pad)
bn0 = BatchNormalization(epsilon=1.9999999494757503e-05, name='bn0', trainable=False)(conv0)
relu0 = ReLU(name='relu0')(bn0)
pooling0_pad = ZeroPadding2D(padding=tuple([1, 1]))(relu0)
pooling0 = MaxPool2D((3, 3), (2, 2), padding='VALID', name='pooling0')(pooling0_pad)
stage1_unit1_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit1_bn1', trainable=False)(pooling0)
stage1_unit1_relu1 = ReLU(name='stage1_unit1_relu1')(stage1_unit1_bn1)
stage1_unit1_conv1 = Conv2D(filters = 64, kernel_size = (1, 1), name = 'stage1_unit1_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit1_relu1)
stage1_unit1_sc = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage1_unit1_sc', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit1_relu1)
stage1_unit1_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit1_bn2', trainable=False)(stage1_unit1_conv1)
stage1_unit1_relu2 = ReLU(name='stage1_unit1_relu2')(stage1_unit1_bn2)
stage1_unit1_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage1_unit1_relu2)
stage1_unit1_conv2 = Conv2D(filters = 64, kernel_size = (3, 3), name = 'stage1_unit1_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit1_conv2_pad)
stage1_unit1_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit1_bn3', trainable=False)(stage1_unit1_conv2)
stage1_unit1_relu3 = ReLU(name='stage1_unit1_relu3')(stage1_unit1_bn3)
stage1_unit1_conv3 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage1_unit1_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit1_relu3)
plus0_v1 = Add()([stage1_unit1_conv3 , stage1_unit1_sc])
stage1_unit2_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit2_bn1', trainable=False)(plus0_v1)
stage1_unit2_relu1 = ReLU(name='stage1_unit2_relu1')(stage1_unit2_bn1)
stage1_unit2_conv1 = Conv2D(filters = 64, kernel_size = (1, 1), name = 'stage1_unit2_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit2_relu1)
stage1_unit2_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit2_bn2', trainable=False)(stage1_unit2_conv1)
stage1_unit2_relu2 = ReLU(name='stage1_unit2_relu2')(stage1_unit2_bn2)
stage1_unit2_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage1_unit2_relu2)
stage1_unit2_conv2 = Conv2D(filters = 64, kernel_size = (3, 3), name = 'stage1_unit2_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit2_conv2_pad)
stage1_unit2_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit2_bn3', trainable=False)(stage1_unit2_conv2)
stage1_unit2_relu3 = ReLU(name='stage1_unit2_relu3')(stage1_unit2_bn3)
stage1_unit2_conv3 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage1_unit2_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit2_relu3)
plus1_v2 = Add()([stage1_unit2_conv3 , plus0_v1])
stage1_unit3_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit3_bn1', trainable=False)(plus1_v2)
stage1_unit3_relu1 = ReLU(name='stage1_unit3_relu1')(stage1_unit3_bn1)
stage1_unit3_conv1 = Conv2D(filters = 64, kernel_size = (1, 1), name = 'stage1_unit3_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit3_relu1)
stage1_unit3_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit3_bn2', trainable=False)(stage1_unit3_conv1)
stage1_unit3_relu2 = ReLU(name='stage1_unit3_relu2')(stage1_unit3_bn2)
stage1_unit3_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage1_unit3_relu2)
stage1_unit3_conv2 = Conv2D(filters = 64, kernel_size = (3, 3), name = 'stage1_unit3_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit3_conv2_pad)
stage1_unit3_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage1_unit3_bn3', trainable=False)(stage1_unit3_conv2)
stage1_unit3_relu3 = ReLU(name='stage1_unit3_relu3')(stage1_unit3_bn3)
stage1_unit3_conv3 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage1_unit3_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage1_unit3_relu3)
plus2 = Add()([stage1_unit3_conv3 , plus1_v2])
stage2_unit1_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit1_bn1', trainable=False)(plus2)
stage2_unit1_relu1 = ReLU(name='stage2_unit1_relu1')(stage2_unit1_bn1)
stage2_unit1_conv1 = Conv2D(filters = 128, kernel_size = (1, 1), name = 'stage2_unit1_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit1_relu1)
stage2_unit1_sc = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit1_sc', strides = [2, 2], padding = 'VALID', use_bias = False)(stage2_unit1_relu1)
stage2_unit1_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit1_bn2', trainable=False)(stage2_unit1_conv1)
stage2_unit1_relu2 = ReLU(name='stage2_unit1_relu2')(stage2_unit1_bn2)
stage2_unit1_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage2_unit1_relu2)
stage2_unit1_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'stage2_unit1_conv2', strides = [2, 2], padding = 'VALID', use_bias = False)(stage2_unit1_conv2_pad)
stage2_unit1_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit1_bn3', trainable=False)(stage2_unit1_conv2)
stage2_unit1_relu3 = ReLU(name='stage2_unit1_relu3')(stage2_unit1_bn3)
stage2_unit1_conv3 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit1_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit1_relu3)
plus3 = Add()([stage2_unit1_conv3 , stage2_unit1_sc])
stage2_unit2_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit2_bn1', trainable=False)(plus3)
stage2_unit2_relu1 = ReLU(name='stage2_unit2_relu1')(stage2_unit2_bn1)
stage2_unit2_conv1 = Conv2D(filters = 128, kernel_size = (1, 1), name = 'stage2_unit2_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit2_relu1)
stage2_unit2_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit2_bn2', trainable=False)(stage2_unit2_conv1)
stage2_unit2_relu2 = ReLU(name='stage2_unit2_relu2')(stage2_unit2_bn2)
stage2_unit2_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage2_unit2_relu2)
stage2_unit2_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'stage2_unit2_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit2_conv2_pad)
stage2_unit2_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit2_bn3', trainable=False)(stage2_unit2_conv2)
stage2_unit2_relu3 = ReLU(name='stage2_unit2_relu3')(stage2_unit2_bn3)
stage2_unit2_conv3 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit2_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit2_relu3)
plus4 = Add()([stage2_unit2_conv3 , plus3])
stage2_unit3_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit3_bn1', trainable=False)(plus4)
stage2_unit3_relu1 = ReLU(name='stage2_unit3_relu1')(stage2_unit3_bn1)
stage2_unit3_conv1 = Conv2D(filters = 128, kernel_size = (1, 1), name = 'stage2_unit3_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit3_relu1)
stage2_unit3_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit3_bn2', trainable=False)(stage2_unit3_conv1)
stage2_unit3_relu2 = ReLU(name='stage2_unit3_relu2')(stage2_unit3_bn2)
stage2_unit3_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage2_unit3_relu2)
stage2_unit3_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'stage2_unit3_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit3_conv2_pad)
stage2_unit3_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit3_bn3', trainable=False)(stage2_unit3_conv2)
stage2_unit3_relu3 = ReLU(name='stage2_unit3_relu3')(stage2_unit3_bn3)
stage2_unit3_conv3 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit3_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit3_relu3)
plus5 = Add()([stage2_unit3_conv3 , plus4])
stage2_unit4_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit4_bn1', trainable=False)(plus5)
stage2_unit4_relu1 = ReLU(name='stage2_unit4_relu1')(stage2_unit4_bn1)
stage2_unit4_conv1 = Conv2D(filters = 128, kernel_size = (1, 1), name = 'stage2_unit4_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit4_relu1)
stage2_unit4_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit4_bn2', trainable=False)(stage2_unit4_conv1)
stage2_unit4_relu2 = ReLU(name='stage2_unit4_relu2')(stage2_unit4_bn2)
stage2_unit4_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage2_unit4_relu2)
stage2_unit4_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'stage2_unit4_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit4_conv2_pad)
stage2_unit4_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage2_unit4_bn3', trainable=False)(stage2_unit4_conv2)
stage2_unit4_relu3 = ReLU(name='stage2_unit4_relu3')(stage2_unit4_bn3)
stage2_unit4_conv3 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage2_unit4_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage2_unit4_relu3)
plus6 = Add()([stage2_unit4_conv3 , plus5])
stage3_unit1_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit1_bn1', trainable=False)(plus6)
stage3_unit1_relu1 = ReLU(name='stage3_unit1_relu1')(stage3_unit1_bn1)
stage3_unit1_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit1_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit1_relu1)
stage3_unit1_sc = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit1_sc', strides = [2, 2], padding = 'VALID', use_bias = False)(stage3_unit1_relu1)
stage3_unit1_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit1_bn2', trainable=False)(stage3_unit1_conv1)
stage3_unit1_relu2 = ReLU(name='stage3_unit1_relu2')(stage3_unit1_bn2)
stage3_unit1_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit1_relu2)
stage3_unit1_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit1_conv2', strides = [2, 2], padding = 'VALID', use_bias = False)(stage3_unit1_conv2_pad)
ssh_m1_red_conv = Conv2D(filters = 256, kernel_size = (1, 1), name = 'ssh_m1_red_conv', strides = [1, 1], padding = 'VALID', use_bias = True)(stage3_unit1_relu2)
stage3_unit1_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit1_bn3', trainable=False)(stage3_unit1_conv2)
ssh_m1_red_conv_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_red_conv_bn', trainable=False)(ssh_m1_red_conv)
stage3_unit1_relu3 = ReLU(name='stage3_unit1_relu3')(stage3_unit1_bn3)
ssh_m1_red_conv_relu = ReLU(name='ssh_m1_red_conv_relu')(ssh_m1_red_conv_bn)
stage3_unit1_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit1_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit1_relu3)
plus7 = Add()([stage3_unit1_conv3 , stage3_unit1_sc])
stage3_unit2_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit2_bn1', trainable=False)(plus7)
stage3_unit2_relu1 = ReLU(name='stage3_unit2_relu1')(stage3_unit2_bn1)
stage3_unit2_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit2_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit2_relu1)
stage3_unit2_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit2_bn2', trainable=False)(stage3_unit2_conv1)
stage3_unit2_relu2 = ReLU(name='stage3_unit2_relu2')(stage3_unit2_bn2)
stage3_unit2_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit2_relu2)
stage3_unit2_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit2_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit2_conv2_pad)
stage3_unit2_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit2_bn3', trainable=False)(stage3_unit2_conv2)
stage3_unit2_relu3 = ReLU(name='stage3_unit2_relu3')(stage3_unit2_bn3)
stage3_unit2_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit2_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit2_relu3)
plus8 = Add()([stage3_unit2_conv3 , plus7])
stage3_unit3_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit3_bn1', trainable=False)(plus8)
stage3_unit3_relu1 = ReLU(name='stage3_unit3_relu1')(stage3_unit3_bn1)
stage3_unit3_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit3_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit3_relu1)
stage3_unit3_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit3_bn2', trainable=False)(stage3_unit3_conv1)
stage3_unit3_relu2 = ReLU(name='stage3_unit3_relu2')(stage3_unit3_bn2)
stage3_unit3_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit3_relu2)
stage3_unit3_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit3_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit3_conv2_pad)
stage3_unit3_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit3_bn3', trainable=False)(stage3_unit3_conv2)
stage3_unit3_relu3 = ReLU(name='stage3_unit3_relu3')(stage3_unit3_bn3)
stage3_unit3_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit3_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit3_relu3)
plus9 = Add()([stage3_unit3_conv3 , plus8])
stage3_unit4_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit4_bn1', trainable=False)(plus9)
stage3_unit4_relu1 = ReLU(name='stage3_unit4_relu1')(stage3_unit4_bn1)
stage3_unit4_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit4_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit4_relu1)
stage3_unit4_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit4_bn2', trainable=False)(stage3_unit4_conv1)
stage3_unit4_relu2 = ReLU(name='stage3_unit4_relu2')(stage3_unit4_bn2)
stage3_unit4_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit4_relu2)
stage3_unit4_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit4_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit4_conv2_pad)
stage3_unit4_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit4_bn3', trainable=False)(stage3_unit4_conv2)
stage3_unit4_relu3 = ReLU(name='stage3_unit4_relu3')(stage3_unit4_bn3)
stage3_unit4_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit4_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit4_relu3)
plus10 = Add()([stage3_unit4_conv3 , plus9])
stage3_unit5_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit5_bn1', trainable=False)(plus10)
stage3_unit5_relu1 = ReLU(name='stage3_unit5_relu1')(stage3_unit5_bn1)
stage3_unit5_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit5_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit5_relu1)
stage3_unit5_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit5_bn2', trainable=False)(stage3_unit5_conv1)
stage3_unit5_relu2 = ReLU(name='stage3_unit5_relu2')(stage3_unit5_bn2)
stage3_unit5_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit5_relu2)
stage3_unit5_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit5_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit5_conv2_pad)
stage3_unit5_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit5_bn3', trainable=False)(stage3_unit5_conv2)
stage3_unit5_relu3 = ReLU(name='stage3_unit5_relu3')(stage3_unit5_bn3)
stage3_unit5_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit5_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit5_relu3)
plus11 = Add()([stage3_unit5_conv3 , plus10])
stage3_unit6_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit6_bn1', trainable=False)(plus11)
stage3_unit6_relu1 = ReLU(name='stage3_unit6_relu1')(stage3_unit6_bn1)
stage3_unit6_conv1 = Conv2D(filters = 256, kernel_size = (1, 1), name = 'stage3_unit6_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit6_relu1)
stage3_unit6_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit6_bn2', trainable=False)(stage3_unit6_conv1)
stage3_unit6_relu2 = ReLU(name='stage3_unit6_relu2')(stage3_unit6_bn2)
stage3_unit6_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage3_unit6_relu2)
stage3_unit6_conv2 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'stage3_unit6_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit6_conv2_pad)
stage3_unit6_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage3_unit6_bn3', trainable=False)(stage3_unit6_conv2)
stage3_unit6_relu3 = ReLU(name='stage3_unit6_relu3')(stage3_unit6_bn3)
stage3_unit6_conv3 = Conv2D(filters = 1024, kernel_size = (1, 1), name = 'stage3_unit6_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage3_unit6_relu3)
plus12 = Add()([stage3_unit6_conv3 , plus11])
stage4_unit1_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit1_bn1', trainable=False)(plus12)
stage4_unit1_relu1 = ReLU(name='stage4_unit1_relu1')(stage4_unit1_bn1)
stage4_unit1_conv1 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage4_unit1_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit1_relu1)
stage4_unit1_sc = Conv2D(filters = 2048, kernel_size = (1, 1), name = 'stage4_unit1_sc', strides = [2, 2], padding = 'VALID', use_bias = False)(stage4_unit1_relu1)
stage4_unit1_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit1_bn2', trainable=False)(stage4_unit1_conv1)
stage4_unit1_relu2 = ReLU(name='stage4_unit1_relu2')(stage4_unit1_bn2)
stage4_unit1_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage4_unit1_relu2)
stage4_unit1_conv2 = Conv2D(filters = 512, kernel_size = (3, 3), name = 'stage4_unit1_conv2', strides = [2, 2], padding = 'VALID', use_bias = False)(stage4_unit1_conv2_pad)
ssh_c2_lateral = Conv2D(filters = 256, kernel_size = (1, 1), name = 'ssh_c2_lateral', strides = [1, 1], padding = 'VALID', use_bias = True)(stage4_unit1_relu2)
stage4_unit1_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit1_bn3', trainable=False)(stage4_unit1_conv2)
ssh_c2_lateral_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_c2_lateral_bn', trainable=False)(ssh_c2_lateral)
stage4_unit1_relu3 = ReLU(name='stage4_unit1_relu3')(stage4_unit1_bn3)
ssh_c2_lateral_relu = ReLU(name='ssh_c2_lateral_relu')(ssh_c2_lateral_bn)
stage4_unit1_conv3 = Conv2D(filters = 2048, kernel_size = (1, 1), name = 'stage4_unit1_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit1_relu3)
plus13 = Add()([stage4_unit1_conv3 , stage4_unit1_sc])
stage4_unit2_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit2_bn1', trainable=False)(plus13)
stage4_unit2_relu1 = ReLU(name='stage4_unit2_relu1')(stage4_unit2_bn1)
stage4_unit2_conv1 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage4_unit2_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit2_relu1)
stage4_unit2_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit2_bn2', trainable=False)(stage4_unit2_conv1)
stage4_unit2_relu2 = ReLU(name='stage4_unit2_relu2')(stage4_unit2_bn2)
stage4_unit2_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage4_unit2_relu2)
stage4_unit2_conv2 = Conv2D(filters = 512, kernel_size = (3, 3), name = 'stage4_unit2_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit2_conv2_pad)
stage4_unit2_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit2_bn3', trainable=False)(stage4_unit2_conv2)
stage4_unit2_relu3 = ReLU(name='stage4_unit2_relu3')(stage4_unit2_bn3)
stage4_unit2_conv3 = Conv2D(filters = 2048, kernel_size = (1, 1), name = 'stage4_unit2_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit2_relu3)
plus14 = Add()([stage4_unit2_conv3 , plus13])
stage4_unit3_bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit3_bn1', trainable=False)(plus14)
stage4_unit3_relu1 = ReLU(name='stage4_unit3_relu1')(stage4_unit3_bn1)
stage4_unit3_conv1 = Conv2D(filters = 512, kernel_size = (1, 1), name = 'stage4_unit3_conv1', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit3_relu1)
stage4_unit3_bn2 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit3_bn2', trainable=False)(stage4_unit3_conv1)
stage4_unit3_relu2 = ReLU(name='stage4_unit3_relu2')(stage4_unit3_bn2)
stage4_unit3_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(stage4_unit3_relu2)
stage4_unit3_conv2 = Conv2D(filters = 512, kernel_size = (3, 3), name = 'stage4_unit3_conv2', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit3_conv2_pad)
stage4_unit3_bn3 = BatchNormalization(epsilon=1.9999999494757503e-05, name='stage4_unit3_bn3', trainable=False)(stage4_unit3_conv2)
stage4_unit3_relu3 = ReLU(name='stage4_unit3_relu3')(stage4_unit3_bn3)
stage4_unit3_conv3 = Conv2D(filters = 2048, kernel_size = (1, 1), name = 'stage4_unit3_conv3', strides = [1, 1], padding = 'VALID', use_bias = False)(stage4_unit3_relu3)
plus15 = Add()([stage4_unit3_conv3 , plus14])
bn1 = BatchNormalization(epsilon=1.9999999494757503e-05, name='bn1', trainable=False)(plus15)
relu1 = ReLU(name='relu1')(bn1)
ssh_c3_lateral = Conv2D(filters = 256, kernel_size = (1, 1), name = 'ssh_c3_lateral', strides = [1, 1], padding = 'VALID', use_bias = True)(relu1)
ssh_c3_lateral_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_c3_lateral_bn', trainable=False)(ssh_c3_lateral)
ssh_c3_lateral_relu = ReLU(name='ssh_c3_lateral_relu')(ssh_c3_lateral_bn)
ssh_m3_det_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c3_lateral_relu)
ssh_m3_det_conv1 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_m3_det_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_conv1_pad)
ssh_m3_det_context_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c3_lateral_relu)
ssh_m3_det_context_conv1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m3_det_context_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_context_conv1_pad)
ssh_c3_up = UpSampling2D(size=(2, 2), interpolation="nearest", name="ssh_c3_up")(ssh_c3_lateral_relu)
ssh_m3_det_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_conv1_bn', trainable=False)(ssh_m3_det_conv1)
ssh_m3_det_context_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_context_conv1_bn', trainable=False)(ssh_m3_det_context_conv1)
x1_shape = tf.shape(ssh_c3_up)
x2_shape = tf.shape(ssh_c2_lateral_relu)
offsets = [0, (x1_shape[1] - x2_shape[1]) // 2, (x1_shape[2] - x2_shape[2]) // 2, 0]
size = [-1, x2_shape[1], x2_shape[2], -1]
crop0 = tf.slice(ssh_c3_up, offsets, size, "crop0")
ssh_m3_det_context_conv1_relu = ReLU(name='ssh_m3_det_context_conv1_relu')(ssh_m3_det_context_conv1_bn)
plus0_v2 = Add()([ssh_c2_lateral_relu , crop0])
ssh_m3_det_context_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m3_det_context_conv1_relu)
ssh_m3_det_context_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m3_det_context_conv2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_context_conv2_pad)
ssh_m3_det_context_conv3_1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m3_det_context_conv1_relu)
ssh_m3_det_context_conv3_1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m3_det_context_conv3_1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_context_conv3_1_pad)
ssh_c2_aggr_pad = ZeroPadding2D(padding=tuple([1, 1]))(plus0_v2)
ssh_c2_aggr = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_c2_aggr', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_c2_aggr_pad)
ssh_m3_det_context_conv2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_context_conv2_bn', trainable=False)(ssh_m3_det_context_conv2)
ssh_m3_det_context_conv3_1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_context_conv3_1_bn', trainable=False)(ssh_m3_det_context_conv3_1)
ssh_c2_aggr_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_c2_aggr_bn', trainable=False)(ssh_c2_aggr)
ssh_m3_det_context_conv3_1_relu = ReLU(name='ssh_m3_det_context_conv3_1_relu')(ssh_m3_det_context_conv3_1_bn)
ssh_c2_aggr_relu = ReLU(name='ssh_c2_aggr_relu')(ssh_c2_aggr_bn)
ssh_m3_det_context_conv3_2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m3_det_context_conv3_1_relu)
ssh_m3_det_context_conv3_2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m3_det_context_conv3_2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_context_conv3_2_pad)
ssh_m2_det_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c2_aggr_relu)
ssh_m2_det_conv1 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_m2_det_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_conv1_pad)
ssh_m2_det_context_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c2_aggr_relu)
ssh_m2_det_context_conv1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m2_det_context_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_context_conv1_pad)
ssh_m2_red_up = UpSampling2D(size=(2, 2), interpolation="nearest", name="ssh_m2_red_up")(ssh_c2_aggr_relu)
ssh_m3_det_context_conv3_2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m3_det_context_conv3_2_bn', trainable=False)(ssh_m3_det_context_conv3_2)
ssh_m2_det_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_conv1_bn', trainable=False)(ssh_m2_det_conv1)
ssh_m2_det_context_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_context_conv1_bn', trainable=False)(ssh_m2_det_context_conv1)
x1_shape = tf.shape(ssh_m2_red_up)
x2_shape = tf.shape(ssh_m1_red_conv_relu)
offsets = [0, (x1_shape[1] - x2_shape[1]) // 2, (x1_shape[2] - x2_shape[2]) // 2, 0]
size = [-1, x2_shape[1], x2_shape[2], -1]
crop1 = tf.slice(ssh_m2_red_up, offsets, size, "crop1")
ssh_m3_det_concat = concatenate([ssh_m3_det_conv1_bn, ssh_m3_det_context_conv2_bn, ssh_m3_det_context_conv3_2_bn], 3, name='ssh_m3_det_concat')
ssh_m2_det_context_conv1_relu = ReLU(name='ssh_m2_det_context_conv1_relu')(ssh_m2_det_context_conv1_bn)
plus1_v1 = Add()([ssh_m1_red_conv_relu , crop1])
ssh_m3_det_concat_relu = ReLU(name='ssh_m3_det_concat_relu')(ssh_m3_det_concat)
ssh_m2_det_context_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m2_det_context_conv1_relu)
ssh_m2_det_context_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m2_det_context_conv2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_context_conv2_pad)
ssh_m2_det_context_conv3_1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m2_det_context_conv1_relu)
ssh_m2_det_context_conv3_1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m2_det_context_conv3_1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_context_conv3_1_pad)
ssh_c1_aggr_pad = ZeroPadding2D(padding=tuple([1, 1]))(plus1_v1)
ssh_c1_aggr = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_c1_aggr', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_c1_aggr_pad)
face_rpn_cls_score_stride32 = Conv2D(filters = 4, kernel_size = (1, 1), name = 'face_rpn_cls_score_stride32', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_concat_relu)
inter_1 = concatenate([face_rpn_cls_score_stride32[:, :, :, 0], face_rpn_cls_score_stride32[:, :, :, 1]], axis=1)
inter_2 = concatenate([face_rpn_cls_score_stride32[:, :, :, 2], face_rpn_cls_score_stride32[:, :, :, 3]], axis=1)
final = tf.stack([inter_1, inter_2])
face_rpn_cls_score_reshape_stride32 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_score_reshape_stride32")
face_rpn_bbox_pred_stride32 = Conv2D(filters = 8, kernel_size = (1, 1), name = 'face_rpn_bbox_pred_stride32', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_concat_relu)
face_rpn_landmark_pred_stride32 = Conv2D(filters = 20, kernel_size = (1, 1), name = 'face_rpn_landmark_pred_stride32', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m3_det_concat_relu)
ssh_m2_det_context_conv2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_context_conv2_bn', trainable=False)(ssh_m2_det_context_conv2)
ssh_m2_det_context_conv3_1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_context_conv3_1_bn', trainable=False)(ssh_m2_det_context_conv3_1)
ssh_c1_aggr_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_c1_aggr_bn', trainable=False)(ssh_c1_aggr)
ssh_m2_det_context_conv3_1_relu = ReLU(name='ssh_m2_det_context_conv3_1_relu')(ssh_m2_det_context_conv3_1_bn)
ssh_c1_aggr_relu = ReLU(name='ssh_c1_aggr_relu')(ssh_c1_aggr_bn)
face_rpn_cls_prob_stride32 = Softmax(name = 'face_rpn_cls_prob_stride32')(face_rpn_cls_score_reshape_stride32)
input_shape = [tf.shape(face_rpn_cls_prob_stride32)[k] for k in range(4)]
sz = tf.dtypes.cast(input_shape[1] / 2, dtype=tf.int32)
inter_1 = face_rpn_cls_prob_stride32[:, 0:sz, :, 0]
inter_2 = face_rpn_cls_prob_stride32[:, 0:sz, :, 1]
inter_3 = face_rpn_cls_prob_stride32[:, sz:, :, 0]
inter_4 = face_rpn_cls_prob_stride32[:, sz:, :, 1]
final = tf.stack([inter_1, inter_3, inter_2, inter_4])
face_rpn_cls_prob_reshape_stride32 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_prob_reshape_stride32")
ssh_m2_det_context_conv3_2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m2_det_context_conv3_1_relu)
ssh_m2_det_context_conv3_2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m2_det_context_conv3_2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_context_conv3_2_pad)
ssh_m1_det_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c1_aggr_relu)
ssh_m1_det_conv1 = Conv2D(filters = 256, kernel_size = (3, 3), name = 'ssh_m1_det_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_conv1_pad)
ssh_m1_det_context_conv1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_c1_aggr_relu)
ssh_m1_det_context_conv1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m1_det_context_conv1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_context_conv1_pad)
ssh_m2_det_context_conv3_2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m2_det_context_conv3_2_bn', trainable=False)(ssh_m2_det_context_conv3_2)
ssh_m1_det_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_conv1_bn', trainable=False)(ssh_m1_det_conv1)
ssh_m1_det_context_conv1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_context_conv1_bn', trainable=False)(ssh_m1_det_context_conv1)
ssh_m2_det_concat = concatenate([ssh_m2_det_conv1_bn, ssh_m2_det_context_conv2_bn, ssh_m2_det_context_conv3_2_bn], 3, name='ssh_m2_det_concat')
ssh_m1_det_context_conv1_relu = ReLU(name='ssh_m1_det_context_conv1_relu')(ssh_m1_det_context_conv1_bn)
ssh_m2_det_concat_relu = ReLU(name='ssh_m2_det_concat_relu')(ssh_m2_det_concat)
ssh_m1_det_context_conv2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m1_det_context_conv1_relu)
ssh_m1_det_context_conv2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m1_det_context_conv2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_context_conv2_pad)
ssh_m1_det_context_conv3_1_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m1_det_context_conv1_relu)
ssh_m1_det_context_conv3_1 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m1_det_context_conv3_1', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_context_conv3_1_pad)
face_rpn_cls_score_stride16 = Conv2D(filters = 4, kernel_size = (1, 1), name = 'face_rpn_cls_score_stride16', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_concat_relu)
inter_1 = concatenate([face_rpn_cls_score_stride16[:, :, :, 0], face_rpn_cls_score_stride16[:, :, :, 1]], axis=1)
inter_2 = concatenate([face_rpn_cls_score_stride16[:, :, :, 2], face_rpn_cls_score_stride16[:, :, :, 3]], axis=1)
final = tf.stack([inter_1, inter_2])
face_rpn_cls_score_reshape_stride16 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_score_reshape_stride16")
face_rpn_bbox_pred_stride16 = Conv2D(filters = 8, kernel_size = (1, 1), name = 'face_rpn_bbox_pred_stride16', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_concat_relu)
face_rpn_landmark_pred_stride16 = Conv2D(filters = 20, kernel_size = (1, 1), name = 'face_rpn_landmark_pred_stride16', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m2_det_concat_relu)
ssh_m1_det_context_conv2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_context_conv2_bn', trainable=False)(ssh_m1_det_context_conv2)
ssh_m1_det_context_conv3_1_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_context_conv3_1_bn', trainable=False)(ssh_m1_det_context_conv3_1)
ssh_m1_det_context_conv3_1_relu = ReLU(name='ssh_m1_det_context_conv3_1_relu')(ssh_m1_det_context_conv3_1_bn)
face_rpn_cls_prob_stride16 = Softmax(name = 'face_rpn_cls_prob_stride16')(face_rpn_cls_score_reshape_stride16)
input_shape = [tf.shape(face_rpn_cls_prob_stride16)[k] for k in range(4)]
sz = tf.dtypes.cast(input_shape[1] / 2, dtype=tf.int32)
inter_1 = face_rpn_cls_prob_stride16[:, 0:sz, :, 0]
inter_2 = face_rpn_cls_prob_stride16[:, 0:sz, :, 1]
inter_3 = face_rpn_cls_prob_stride16[:, sz:, :, 0]
inter_4 = face_rpn_cls_prob_stride16[:, sz:, :, 1]
final = tf.stack([inter_1, inter_3, inter_2, inter_4])
face_rpn_cls_prob_reshape_stride16 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_prob_reshape_stride16")
ssh_m1_det_context_conv3_2_pad = ZeroPadding2D(padding=tuple([1, 1]))(ssh_m1_det_context_conv3_1_relu)
ssh_m1_det_context_conv3_2 = Conv2D(filters = 128, kernel_size = (3, 3), name = 'ssh_m1_det_context_conv3_2', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_context_conv3_2_pad)
ssh_m1_det_context_conv3_2_bn = BatchNormalization(epsilon=1.9999999494757503e-05, name='ssh_m1_det_context_conv3_2_bn', trainable=False)(ssh_m1_det_context_conv3_2)
ssh_m1_det_concat = concatenate([ssh_m1_det_conv1_bn, ssh_m1_det_context_conv2_bn, ssh_m1_det_context_conv3_2_bn], 3, name='ssh_m1_det_concat')
ssh_m1_det_concat_relu = ReLU(name='ssh_m1_det_concat_relu')(ssh_m1_det_concat)
face_rpn_cls_score_stride8 = Conv2D(filters = 4, kernel_size = (1, 1), name = 'face_rpn_cls_score_stride8', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_concat_relu)
inter_1 = concatenate([face_rpn_cls_score_stride8[:, :, :, 0], face_rpn_cls_score_stride8[:, :, :, 1]], axis=1)
inter_2 = concatenate([face_rpn_cls_score_stride8[:, :, :, 2], face_rpn_cls_score_stride8[:, :, :, 3]], axis=1)
final = tf.stack([inter_1, inter_2])
face_rpn_cls_score_reshape_stride8 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_score_reshape_stride8")
face_rpn_bbox_pred_stride8 = Conv2D(filters = 8, kernel_size = (1, 1), name = 'face_rpn_bbox_pred_stride8', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_concat_relu)
face_rpn_landmark_pred_stride8 = Conv2D(filters = 20, kernel_size = (1, 1), name = 'face_rpn_landmark_pred_stride8', strides = [1, 1], padding = 'VALID', use_bias = True)(ssh_m1_det_concat_relu)
face_rpn_cls_prob_stride8 = Softmax(name = 'face_rpn_cls_prob_stride8')(face_rpn_cls_score_reshape_stride8)
input_shape = [tf.shape(face_rpn_cls_prob_stride8)[k] for k in range(4)]
sz = tf.dtypes.cast(input_shape[1] / 2, dtype=tf.int32)
inter_1 = face_rpn_cls_prob_stride8[:, 0:sz, :, 0]
inter_2 = face_rpn_cls_prob_stride8[:, 0:sz, :, 1]
inter_3 = face_rpn_cls_prob_stride8[:, sz:, :, 0]
inter_4 = face_rpn_cls_prob_stride8[:, sz:, :, 1]
final = tf.stack([inter_1, inter_3, inter_2, inter_4])
face_rpn_cls_prob_reshape_stride8 = tf.transpose(final, (1, 2, 3, 0), name="face_rpn_cls_prob_reshape_stride8")
model = Model(inputs=data,
outputs=[face_rpn_cls_prob_reshape_stride32,
face_rpn_bbox_pred_stride32,
face_rpn_landmark_pred_stride32,
face_rpn_cls_prob_reshape_stride16,
face_rpn_bbox_pred_stride16,
face_rpn_landmark_pred_stride16,
face_rpn_cls_prob_reshape_stride8,
face_rpn_bbox_pred_stride8,
face_rpn_landmark_pred_stride8
])
model = load_weights(model)
return model
|