conciomith's picture
Upload postprocess.py
f8112c8
raw
history blame
6.75 kB
import numpy as np
from PIL import Image
import math
def findEuclideanDistance(source_representation, test_representation):
euclidean_distance = source_representation - test_representation
euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
euclidean_distance = np.sqrt(euclidean_distance)
return euclidean_distance
#this function copied from the deepface repository: https://github.com/serengil/deepface/blob/master/deepface/commons/functions.py
def alignment_procedure(img, left_eye, right_eye, nose):
#this function aligns given face in img based on left and right eye coordinates
left_eye_x, left_eye_y = left_eye
right_eye_x, right_eye_y = right_eye
#-----------------------
upside_down = False
if nose[1] < left_eye[1] or nose[1] < right_eye[1]:
upside_down = True
#-----------------------
#find rotation direction
if left_eye_y > right_eye_y:
point_3rd = (right_eye_x, left_eye_y)
direction = -1 #rotate same direction to clock
else:
point_3rd = (left_eye_x, right_eye_y)
direction = 1 #rotate inverse direction of clock
#-----------------------
#find length of triangle edges
a = findEuclideanDistance(np.array(left_eye), np.array(point_3rd))
b = findEuclideanDistance(np.array(right_eye), np.array(point_3rd))
c = findEuclideanDistance(np.array(right_eye), np.array(left_eye))
#-----------------------
#apply cosine rule
if b != 0 and c != 0: #this multiplication causes division by zero in cos_a calculation
cos_a = (b*b + c*c - a*a)/(2*b*c)
#PR15: While mathematically cos_a must be within the closed range [-1.0, 1.0], floating point errors would produce cases violating this
#In fact, we did come across a case where cos_a took the value 1.0000000169176173, which lead to a NaN from the following np.arccos step
cos_a = min(1.0, max(-1.0, cos_a))
angle = np.arccos(cos_a) #angle in radian
angle = (angle * 180) / math.pi #radian to degree
#-----------------------
#rotate base image
if direction == -1:
angle = 90 - angle
if upside_down == True:
angle = angle + 90
img = Image.fromarray(img)
img = np.array(img.rotate(direction * angle))
#-----------------------
return img #return img anyway
#this function is copied from the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/retinaface.py
def bbox_pred(boxes, box_deltas):
if boxes.shape[0] == 0:
return np.zeros((0, box_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + 1.0
heights = boxes[:, 3] - boxes[:, 1] + 1.0
ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0)
ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0)
dx = box_deltas[:, 0:1]
dy = box_deltas[:, 1:2]
dw = box_deltas[:, 2:3]
dh = box_deltas[:, 3:4]
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(box_deltas.shape)
# x1
pred_boxes[:, 0:1] = pred_ctr_x - 0.5 * (pred_w - 1.0)
# y1
pred_boxes[:, 1:2] = pred_ctr_y - 0.5 * (pred_h - 1.0)
# x2
pred_boxes[:, 2:3] = pred_ctr_x + 0.5 * (pred_w - 1.0)
# y2
pred_boxes[:, 3:4] = pred_ctr_y + 0.5 * (pred_h - 1.0)
if box_deltas.shape[1]>4:
pred_boxes[:,4:] = box_deltas[:,4:]
return pred_boxes
# This function copied from the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/retinaface.py
def landmark_pred(boxes, landmark_deltas):
if boxes.shape[0] == 0:
return np.zeros((0, landmark_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + 1.0
heights = boxes[:, 3] - boxes[:, 1] + 1.0
ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0)
ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0)
pred = landmark_deltas.copy()
for i in range(5):
pred[:,i,0] = landmark_deltas[:,i,0]*widths + ctr_x
pred[:,i,1] = landmark_deltas[:,i,1]*heights + ctr_y
return pred
# This function copied from rcnn module of retinaface-tf2 project: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/processing/bbox_transform.py
def clip_boxes(boxes, im_shape):
# x1 >= 0
boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
# y1 >= 0
boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
# x2 < im_shape[1]
boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
# y2 < im_shape[0]
boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
return boxes
#this function is mainly based on the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/cython/anchors.pyx
def anchors_plane(height, width, stride, base_anchors):
A = base_anchors.shape[0]
c_0_2 = np.tile(np.arange(0, width)[np.newaxis, :, np.newaxis, np.newaxis], (height, 1, A, 1))
c_1_3 = np.tile(np.arange(0, height)[:, np.newaxis, np.newaxis, np.newaxis], (1, width, A, 1))
all_anchors = np.concatenate([c_0_2, c_1_3, c_0_2, c_1_3], axis=-1) * stride + np.tile(base_anchors[np.newaxis, np.newaxis, :, :], (height, width, 1, 1))
return all_anchors
#this function is mainly based on the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/cython/cpu_nms.pyx
#Fast R-CNN by Ross Girshick
def cpu_nms(dets, threshold):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
ndets = dets.shape[0]
suppressed = np.zeros((ndets), dtype=np.int)
keep = []
for _i in range(ndets):
i = order[_i]
if suppressed[i] == 1:
continue
keep.append(i)
ix1 = x1[i]; iy1 = y1[i]; ix2 = x2[i]; iy2 = y2[i]
iarea = areas[i]
for _j in range(_i + 1, ndets):
j = order[_j]
if suppressed[j] == 1:
continue
xx1 = max(ix1, x1[j]); yy1 = max(iy1, y1[j]); xx2 = min(ix2, x2[j]); yy2 = min(iy2, y2[j])
w = max(0.0, xx2 - xx1 + 1); h = max(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (iarea + areas[j] - inter)
if ovr >= threshold:
suppressed[j] = 1
return keep