Spaces:
Runtime error
Runtime error
import numpy as np | |
from PIL import Image | |
import math | |
def findEuclideanDistance(source_representation, test_representation): | |
euclidean_distance = source_representation - test_representation | |
euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance)) | |
euclidean_distance = np.sqrt(euclidean_distance) | |
return euclidean_distance | |
#this function copied from the deepface repository: https://github.com/serengil/deepface/blob/master/deepface/commons/functions.py | |
def alignment_procedure(img, left_eye, right_eye, nose): | |
#this function aligns given face in img based on left and right eye coordinates | |
left_eye_x, left_eye_y = left_eye | |
right_eye_x, right_eye_y = right_eye | |
#----------------------- | |
upside_down = False | |
if nose[1] < left_eye[1] or nose[1] < right_eye[1]: | |
upside_down = True | |
#----------------------- | |
#find rotation direction | |
if left_eye_y > right_eye_y: | |
point_3rd = (right_eye_x, left_eye_y) | |
direction = -1 #rotate same direction to clock | |
else: | |
point_3rd = (left_eye_x, right_eye_y) | |
direction = 1 #rotate inverse direction of clock | |
#----------------------- | |
#find length of triangle edges | |
a = findEuclideanDistance(np.array(left_eye), np.array(point_3rd)) | |
b = findEuclideanDistance(np.array(right_eye), np.array(point_3rd)) | |
c = findEuclideanDistance(np.array(right_eye), np.array(left_eye)) | |
#----------------------- | |
#apply cosine rule | |
if b != 0 and c != 0: #this multiplication causes division by zero in cos_a calculation | |
cos_a = (b*b + c*c - a*a)/(2*b*c) | |
#PR15: While mathematically cos_a must be within the closed range [-1.0, 1.0], floating point errors would produce cases violating this | |
#In fact, we did come across a case where cos_a took the value 1.0000000169176173, which lead to a NaN from the following np.arccos step | |
cos_a = min(1.0, max(-1.0, cos_a)) | |
angle = np.arccos(cos_a) #angle in radian | |
angle = (angle * 180) / math.pi #radian to degree | |
#----------------------- | |
#rotate base image | |
if direction == -1: | |
angle = 90 - angle | |
if upside_down == True: | |
angle = angle + 90 | |
img = Image.fromarray(img) | |
img = np.array(img.rotate(direction * angle)) | |
#----------------------- | |
return img #return img anyway | |
#this function is copied from the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/retinaface.py | |
def bbox_pred(boxes, box_deltas): | |
if boxes.shape[0] == 0: | |
return np.zeros((0, box_deltas.shape[1])) | |
boxes = boxes.astype(np.float, copy=False) | |
widths = boxes[:, 2] - boxes[:, 0] + 1.0 | |
heights = boxes[:, 3] - boxes[:, 1] + 1.0 | |
ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0) | |
ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0) | |
dx = box_deltas[:, 0:1] | |
dy = box_deltas[:, 1:2] | |
dw = box_deltas[:, 2:3] | |
dh = box_deltas[:, 3:4] | |
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] | |
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] | |
pred_w = np.exp(dw) * widths[:, np.newaxis] | |
pred_h = np.exp(dh) * heights[:, np.newaxis] | |
pred_boxes = np.zeros(box_deltas.shape) | |
# x1 | |
pred_boxes[:, 0:1] = pred_ctr_x - 0.5 * (pred_w - 1.0) | |
# y1 | |
pred_boxes[:, 1:2] = pred_ctr_y - 0.5 * (pred_h - 1.0) | |
# x2 | |
pred_boxes[:, 2:3] = pred_ctr_x + 0.5 * (pred_w - 1.0) | |
# y2 | |
pred_boxes[:, 3:4] = pred_ctr_y + 0.5 * (pred_h - 1.0) | |
if box_deltas.shape[1]>4: | |
pred_boxes[:,4:] = box_deltas[:,4:] | |
return pred_boxes | |
# This function copied from the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/retinaface.py | |
def landmark_pred(boxes, landmark_deltas): | |
if boxes.shape[0] == 0: | |
return np.zeros((0, landmark_deltas.shape[1])) | |
boxes = boxes.astype(np.float, copy=False) | |
widths = boxes[:, 2] - boxes[:, 0] + 1.0 | |
heights = boxes[:, 3] - boxes[:, 1] + 1.0 | |
ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0) | |
ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0) | |
pred = landmark_deltas.copy() | |
for i in range(5): | |
pred[:,i,0] = landmark_deltas[:,i,0]*widths + ctr_x | |
pred[:,i,1] = landmark_deltas[:,i,1]*heights + ctr_y | |
return pred | |
# This function copied from rcnn module of retinaface-tf2 project: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/processing/bbox_transform.py | |
def clip_boxes(boxes, im_shape): | |
# x1 >= 0 | |
boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0) | |
# y1 >= 0 | |
boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0) | |
# x2 < im_shape[1] | |
boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0) | |
# y2 < im_shape[0] | |
boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0) | |
return boxes | |
#this function is mainly based on the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/cython/anchors.pyx | |
def anchors_plane(height, width, stride, base_anchors): | |
A = base_anchors.shape[0] | |
c_0_2 = np.tile(np.arange(0, width)[np.newaxis, :, np.newaxis, np.newaxis], (height, 1, A, 1)) | |
c_1_3 = np.tile(np.arange(0, height)[:, np.newaxis, np.newaxis, np.newaxis], (1, width, A, 1)) | |
all_anchors = np.concatenate([c_0_2, c_1_3, c_0_2, c_1_3], axis=-1) * stride + np.tile(base_anchors[np.newaxis, np.newaxis, :, :], (height, width, 1, 1)) | |
return all_anchors | |
#this function is mainly based on the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/cython/cpu_nms.pyx | |
#Fast R-CNN by Ross Girshick | |
def cpu_nms(dets, threshold): | |
x1 = dets[:, 0] | |
y1 = dets[:, 1] | |
x2 = dets[:, 2] | |
y2 = dets[:, 3] | |
scores = dets[:, 4] | |
areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
order = scores.argsort()[::-1] | |
ndets = dets.shape[0] | |
suppressed = np.zeros((ndets), dtype=np.int) | |
keep = [] | |
for _i in range(ndets): | |
i = order[_i] | |
if suppressed[i] == 1: | |
continue | |
keep.append(i) | |
ix1 = x1[i]; iy1 = y1[i]; ix2 = x2[i]; iy2 = y2[i] | |
iarea = areas[i] | |
for _j in range(_i + 1, ndets): | |
j = order[_j] | |
if suppressed[j] == 1: | |
continue | |
xx1 = max(ix1, x1[j]); yy1 = max(iy1, y1[j]); xx2 = min(ix2, x2[j]); yy2 = min(iy2, y2[j]) | |
w = max(0.0, xx2 - xx1 + 1); h = max(0.0, yy2 - yy1 + 1) | |
inter = w * h | |
ovr = inter / (iarea + areas[j] - inter) | |
if ovr >= threshold: | |
suppressed[j] = 1 | |
return keep | |