Spaces:
Runtime error
Runtime error
import os | |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' | |
#--------------------------- | |
import numpy as np | |
import tensorflow as tf | |
import cv2 | |
import retinaface_model | |
import preprocess | |
import postprocess | |
#--------------------------- | |
import tensorflow as tf | |
tf_version = int(tf.__version__.split(".")[0]) | |
if tf_version == 2: | |
import logging | |
tf.get_logger().setLevel(logging.ERROR) | |
#--------------------------- | |
def build_model(): | |
global model #singleton design pattern | |
if not "model" in globals(): | |
model = tf.function( | |
retinaface_model.build_model(), | |
input_signature=(tf.TensorSpec(shape=[None, None, None, 3], dtype=np.float32),) | |
) | |
return model | |
def get_image(img_path): | |
if type(img_path) == str: # Load from file path | |
if not os.path.isfile(img_path): | |
raise ValueError("Input image file path (", img_path, ") does not exist.") | |
img = cv2.imread(img_path) | |
elif isinstance(img_path, np.ndarray): # Use given NumPy array | |
img = img_path.copy() | |
else: | |
raise ValueError("Invalid image input. Only file paths or a NumPy array accepted.") | |
# Validate image shape | |
if len(img.shape) != 3 or np.prod(img.shape) == 0: | |
raise ValueError("Input image needs to have 3 channels at must not be empty.") | |
return img | |
def detect_faces(img_path, threshold=0.9, model = None, allow_upscaling = True): | |
""" | |
TODO: add function doc here | |
""" | |
img = get_image(img_path) | |
#--------------------------- | |
if model is None: | |
model = build_model() | |
#--------------------------- | |
nms_threshold = 0.4; decay4=0.5 | |
_feat_stride_fpn = [32, 16, 8] | |
_anchors_fpn = { | |
'stride32': np.array([[-248., -248., 263., 263.], [-120., -120., 135., 135.]], dtype=np.float32), | |
'stride16': np.array([[-56., -56., 71., 71.], [-24., -24., 39., 39.]], dtype=np.float32), | |
'stride8': np.array([[-8., -8., 23., 23.], [ 0., 0., 15., 15.]], dtype=np.float32) | |
} | |
_num_anchors = {'stride32': 2, 'stride16': 2, 'stride8': 2} | |
#--------------------------- | |
proposals_list = [] | |
scores_list = [] | |
landmarks_list = [] | |
im_tensor, im_info, im_scale = preprocess.preprocess_image(img, allow_upscaling) | |
net_out = model(im_tensor) | |
net_out = [elt.numpy() for elt in net_out] | |
sym_idx = 0 | |
for _idx, s in enumerate(_feat_stride_fpn): | |
_key = 'stride%s'%s | |
scores = net_out[sym_idx] | |
scores = scores[:, :, :, _num_anchors['stride%s'%s]:] | |
bbox_deltas = net_out[sym_idx + 1] | |
height, width = bbox_deltas.shape[1], bbox_deltas.shape[2] | |
A = _num_anchors['stride%s'%s] | |
K = height * width | |
anchors_fpn = _anchors_fpn['stride%s'%s] | |
anchors = postprocess.anchors_plane(height, width, s, anchors_fpn) | |
anchors = anchors.reshape((K * A, 4)) | |
scores = scores.reshape((-1, 1)) | |
bbox_stds = [1.0, 1.0, 1.0, 1.0] | |
bbox_deltas = bbox_deltas | |
bbox_pred_len = bbox_deltas.shape[3]//A | |
bbox_deltas = bbox_deltas.reshape((-1, bbox_pred_len)) | |
bbox_deltas[:, 0::4] = bbox_deltas[:,0::4] * bbox_stds[0] | |
bbox_deltas[:, 1::4] = bbox_deltas[:,1::4] * bbox_stds[1] | |
bbox_deltas[:, 2::4] = bbox_deltas[:,2::4] * bbox_stds[2] | |
bbox_deltas[:, 3::4] = bbox_deltas[:,3::4] * bbox_stds[3] | |
proposals = postprocess.bbox_pred(anchors, bbox_deltas) | |
proposals = postprocess.clip_boxes(proposals, im_info[:2]) | |
if s==4 and decay4<1.0: | |
scores *= decay4 | |
scores_ravel = scores.ravel() | |
order = np.where(scores_ravel>=threshold)[0] | |
proposals = proposals[order, :] | |
scores = scores[order] | |
proposals[:, 0:4] /= im_scale | |
proposals_list.append(proposals) | |
scores_list.append(scores) | |
landmark_deltas = net_out[sym_idx + 2] | |
landmark_pred_len = landmark_deltas.shape[3]//A | |
landmark_deltas = landmark_deltas.reshape((-1, 5, landmark_pred_len//5)) | |
landmarks = postprocess.landmark_pred(anchors, landmark_deltas) | |
landmarks = landmarks[order, :] | |
landmarks[:, :, 0:2] /= im_scale | |
landmarks_list.append(landmarks) | |
sym_idx += 3 | |
proposals = np.vstack(proposals_list) | |
if proposals.shape[0]==0: | |
landmarks = np.zeros( (0,5,2) ) | |
return np.zeros( (0,5) ), landmarks | |
scores = np.vstack(scores_list) | |
scores_ravel = scores.ravel() | |
order = scores_ravel.argsort()[::-1] | |
proposals = proposals[order, :] | |
scores = scores[order] | |
landmarks = np.vstack(landmarks_list) | |
landmarks = landmarks[order].astype(np.float32, copy=False) | |
pre_det = np.hstack((proposals[:,0:4], scores)).astype(np.float32, copy=False) | |
#nms = cpu_nms_wrapper(nms_threshold) | |
#keep = nms(pre_det) | |
keep = postprocess.cpu_nms(pre_det, nms_threshold) | |
det = np.hstack( (pre_det, proposals[:,4:]) ) | |
det = det[keep, :] | |
landmarks = landmarks[keep] | |
resp = {} | |
for idx, face in enumerate(det): | |
label = 'face_'+str(idx+1) | |
resp[label] = {} | |
resp[label]["score"] = face[4] | |
resp[label]["facial_area"] = list(face[0:4].astype(int)) | |
resp[label]["landmarks"] = {} | |
resp[label]["landmarks"]["right_eye"] = list(landmarks[idx][0]) | |
resp[label]["landmarks"]["left_eye"] = list(landmarks[idx][1]) | |
resp[label]["landmarks"]["nose"] = list(landmarks[idx][2]) | |
resp[label]["landmarks"]["mouth_right"] = list(landmarks[idx][3]) | |
resp[label]["landmarks"]["mouth_left"] = list(landmarks[idx][4]) | |
return resp | |
def extract_faces(img_path, threshold=0.9, model = None, align = True, allow_upscaling = True): | |
resp = [] | |
#--------------------------- | |
img = get_image(img_path) | |
#--------------------------- | |
obj = detect_faces(img_path = img, threshold = threshold, model = model, allow_upscaling = allow_upscaling) | |
if type(obj) == dict: | |
for key in obj: | |
identity = obj[key] | |
facial_area = identity["facial_area"] | |
facial_img = img[facial_area[1]: facial_area[3], facial_area[0]: facial_area[2]] | |
if align == True: | |
landmarks = identity["landmarks"] | |
left_eye = landmarks["left_eye"] | |
right_eye = landmarks["right_eye"] | |
nose = landmarks["nose"] | |
mouth_right = landmarks["mouth_right"] | |
mouth_left = landmarks["mouth_left"] | |
facial_img = postprocess.alignment_procedure(facial_img, right_eye, left_eye, nose) | |
resp.append(facial_img[:, :, ::-1]) | |
#elif type(obj) == tuple: | |
return resp | |