Spaces:
Runtime error
Runtime error
conciomith
commited on
Commit
•
66ca1ff
1
Parent(s):
c303d38
Upload RetinaFace.py
Browse files- RetinaFace.py +216 -0
RetinaFace.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.filterwarnings("ignore")
|
3 |
+
|
4 |
+
import os
|
5 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
6 |
+
|
7 |
+
#---------------------------
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import tensorflow as tf
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
from retinaface.model import retinaface_model
|
14 |
+
from retinaface.commons import preprocess, postprocess
|
15 |
+
|
16 |
+
#---------------------------
|
17 |
+
|
18 |
+
import tensorflow as tf
|
19 |
+
tf_version = int(tf.__version__.split(".")[0])
|
20 |
+
|
21 |
+
if tf_version == 2:
|
22 |
+
import logging
|
23 |
+
tf.get_logger().setLevel(logging.ERROR)
|
24 |
+
|
25 |
+
#---------------------------
|
26 |
+
|
27 |
+
def build_model():
|
28 |
+
|
29 |
+
global model #singleton design pattern
|
30 |
+
|
31 |
+
if not "model" in globals():
|
32 |
+
|
33 |
+
model = tf.function(
|
34 |
+
retinaface_model.build_model(),
|
35 |
+
input_signature=(tf.TensorSpec(shape=[None, None, None, 3], dtype=np.float32),)
|
36 |
+
)
|
37 |
+
|
38 |
+
return model
|
39 |
+
|
40 |
+
def get_image(img_path):
|
41 |
+
if type(img_path) == str: # Load from file path
|
42 |
+
if not os.path.isfile(img_path):
|
43 |
+
raise ValueError("Input image file path (", img_path, ") does not exist.")
|
44 |
+
img = cv2.imread(img_path)
|
45 |
+
|
46 |
+
elif isinstance(img_path, np.ndarray): # Use given NumPy array
|
47 |
+
img = img_path.copy()
|
48 |
+
|
49 |
+
else:
|
50 |
+
raise ValueError("Invalid image input. Only file paths or a NumPy array accepted.")
|
51 |
+
|
52 |
+
# Validate image shape
|
53 |
+
if len(img.shape) != 3 or np.prod(img.shape) == 0:
|
54 |
+
raise ValueError("Input image needs to have 3 channels at must not be empty.")
|
55 |
+
|
56 |
+
return img
|
57 |
+
|
58 |
+
def detect_faces(img_path, threshold=0.9, model = None, allow_upscaling = True):
|
59 |
+
"""
|
60 |
+
TODO: add function doc here
|
61 |
+
"""
|
62 |
+
|
63 |
+
img = get_image(img_path)
|
64 |
+
|
65 |
+
#---------------------------
|
66 |
+
|
67 |
+
if model is None:
|
68 |
+
model = build_model()
|
69 |
+
|
70 |
+
#---------------------------
|
71 |
+
|
72 |
+
nms_threshold = 0.4; decay4=0.5
|
73 |
+
|
74 |
+
_feat_stride_fpn = [32, 16, 8]
|
75 |
+
|
76 |
+
_anchors_fpn = {
|
77 |
+
'stride32': np.array([[-248., -248., 263., 263.], [-120., -120., 135., 135.]], dtype=np.float32),
|
78 |
+
'stride16': np.array([[-56., -56., 71., 71.], [-24., -24., 39., 39.]], dtype=np.float32),
|
79 |
+
'stride8': np.array([[-8., -8., 23., 23.], [ 0., 0., 15., 15.]], dtype=np.float32)
|
80 |
+
}
|
81 |
+
|
82 |
+
_num_anchors = {'stride32': 2, 'stride16': 2, 'stride8': 2}
|
83 |
+
|
84 |
+
#---------------------------
|
85 |
+
|
86 |
+
proposals_list = []
|
87 |
+
scores_list = []
|
88 |
+
landmarks_list = []
|
89 |
+
im_tensor, im_info, im_scale = preprocess.preprocess_image(img, allow_upscaling)
|
90 |
+
net_out = model(im_tensor)
|
91 |
+
net_out = [elt.numpy() for elt in net_out]
|
92 |
+
sym_idx = 0
|
93 |
+
|
94 |
+
for _idx, s in enumerate(_feat_stride_fpn):
|
95 |
+
_key = 'stride%s'%s
|
96 |
+
scores = net_out[sym_idx]
|
97 |
+
scores = scores[:, :, :, _num_anchors['stride%s'%s]:]
|
98 |
+
|
99 |
+
bbox_deltas = net_out[sym_idx + 1]
|
100 |
+
height, width = bbox_deltas.shape[1], bbox_deltas.shape[2]
|
101 |
+
|
102 |
+
A = _num_anchors['stride%s'%s]
|
103 |
+
K = height * width
|
104 |
+
anchors_fpn = _anchors_fpn['stride%s'%s]
|
105 |
+
anchors = postprocess.anchors_plane(height, width, s, anchors_fpn)
|
106 |
+
anchors = anchors.reshape((K * A, 4))
|
107 |
+
scores = scores.reshape((-1, 1))
|
108 |
+
|
109 |
+
bbox_stds = [1.0, 1.0, 1.0, 1.0]
|
110 |
+
bbox_deltas = bbox_deltas
|
111 |
+
bbox_pred_len = bbox_deltas.shape[3]//A
|
112 |
+
bbox_deltas = bbox_deltas.reshape((-1, bbox_pred_len))
|
113 |
+
bbox_deltas[:, 0::4] = bbox_deltas[:,0::4] * bbox_stds[0]
|
114 |
+
bbox_deltas[:, 1::4] = bbox_deltas[:,1::4] * bbox_stds[1]
|
115 |
+
bbox_deltas[:, 2::4] = bbox_deltas[:,2::4] * bbox_stds[2]
|
116 |
+
bbox_deltas[:, 3::4] = bbox_deltas[:,3::4] * bbox_stds[3]
|
117 |
+
proposals = postprocess.bbox_pred(anchors, bbox_deltas)
|
118 |
+
|
119 |
+
proposals = postprocess.clip_boxes(proposals, im_info[:2])
|
120 |
+
|
121 |
+
if s==4 and decay4<1.0:
|
122 |
+
scores *= decay4
|
123 |
+
|
124 |
+
scores_ravel = scores.ravel()
|
125 |
+
order = np.where(scores_ravel>=threshold)[0]
|
126 |
+
proposals = proposals[order, :]
|
127 |
+
scores = scores[order]
|
128 |
+
|
129 |
+
proposals[:, 0:4] /= im_scale
|
130 |
+
proposals_list.append(proposals)
|
131 |
+
scores_list.append(scores)
|
132 |
+
|
133 |
+
landmark_deltas = net_out[sym_idx + 2]
|
134 |
+
landmark_pred_len = landmark_deltas.shape[3]//A
|
135 |
+
landmark_deltas = landmark_deltas.reshape((-1, 5, landmark_pred_len//5))
|
136 |
+
landmarks = postprocess.landmark_pred(anchors, landmark_deltas)
|
137 |
+
landmarks = landmarks[order, :]
|
138 |
+
|
139 |
+
landmarks[:, :, 0:2] /= im_scale
|
140 |
+
landmarks_list.append(landmarks)
|
141 |
+
sym_idx += 3
|
142 |
+
|
143 |
+
proposals = np.vstack(proposals_list)
|
144 |
+
if proposals.shape[0]==0:
|
145 |
+
landmarks = np.zeros( (0,5,2) )
|
146 |
+
return np.zeros( (0,5) ), landmarks
|
147 |
+
scores = np.vstack(scores_list)
|
148 |
+
scores_ravel = scores.ravel()
|
149 |
+
order = scores_ravel.argsort()[::-1]
|
150 |
+
|
151 |
+
proposals = proposals[order, :]
|
152 |
+
scores = scores[order]
|
153 |
+
landmarks = np.vstack(landmarks_list)
|
154 |
+
landmarks = landmarks[order].astype(np.float32, copy=False)
|
155 |
+
|
156 |
+
pre_det = np.hstack((proposals[:,0:4], scores)).astype(np.float32, copy=False)
|
157 |
+
|
158 |
+
#nms = cpu_nms_wrapper(nms_threshold)
|
159 |
+
#keep = nms(pre_det)
|
160 |
+
keep = postprocess.cpu_nms(pre_det, nms_threshold)
|
161 |
+
|
162 |
+
det = np.hstack( (pre_det, proposals[:,4:]) )
|
163 |
+
det = det[keep, :]
|
164 |
+
landmarks = landmarks[keep]
|
165 |
+
|
166 |
+
resp = {}
|
167 |
+
for idx, face in enumerate(det):
|
168 |
+
|
169 |
+
label = 'face_'+str(idx+1)
|
170 |
+
resp[label] = {}
|
171 |
+
resp[label]["score"] = face[4]
|
172 |
+
|
173 |
+
resp[label]["facial_area"] = list(face[0:4].astype(int))
|
174 |
+
|
175 |
+
resp[label]["landmarks"] = {}
|
176 |
+
resp[label]["landmarks"]["right_eye"] = list(landmarks[idx][0])
|
177 |
+
resp[label]["landmarks"]["left_eye"] = list(landmarks[idx][1])
|
178 |
+
resp[label]["landmarks"]["nose"] = list(landmarks[idx][2])
|
179 |
+
resp[label]["landmarks"]["mouth_right"] = list(landmarks[idx][3])
|
180 |
+
resp[label]["landmarks"]["mouth_left"] = list(landmarks[idx][4])
|
181 |
+
|
182 |
+
return resp
|
183 |
+
|
184 |
+
def extract_faces(img_path, threshold=0.9, model = None, align = True, allow_upscaling = True):
|
185 |
+
|
186 |
+
resp = []
|
187 |
+
|
188 |
+
#---------------------------
|
189 |
+
|
190 |
+
img = get_image(img_path)
|
191 |
+
|
192 |
+
#---------------------------
|
193 |
+
|
194 |
+
obj = detect_faces(img_path = img, threshold = threshold, model = model, allow_upscaling = allow_upscaling)
|
195 |
+
|
196 |
+
if type(obj) == dict:
|
197 |
+
for key in obj:
|
198 |
+
identity = obj[key]
|
199 |
+
|
200 |
+
facial_area = identity["facial_area"]
|
201 |
+
facial_img = img[facial_area[1]: facial_area[3], facial_area[0]: facial_area[2]]
|
202 |
+
|
203 |
+
if align == True:
|
204 |
+
landmarks = identity["landmarks"]
|
205 |
+
left_eye = landmarks["left_eye"]
|
206 |
+
right_eye = landmarks["right_eye"]
|
207 |
+
nose = landmarks["nose"]
|
208 |
+
mouth_right = landmarks["mouth_right"]
|
209 |
+
mouth_left = landmarks["mouth_left"]
|
210 |
+
|
211 |
+
facial_img = postprocess.alignment_procedure(facial_img, right_eye, left_eye, nose)
|
212 |
+
|
213 |
+
resp.append(facial_img[:, :, ::-1])
|
214 |
+
#elif type(obj) == tuple:
|
215 |
+
|
216 |
+
return resp
|