Spaces:
Build error
Build error
added rag implementation for the model and specified a sys prompt
Browse files- app.py +42 -34
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import
|
4 |
-
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
from threading import Thread
|
7 |
|
8 |
# Set an environment variable
|
@@ -37,33 +37,52 @@ h1 {
|
|
37 |
}
|
38 |
|
39 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
# Load the tokenizer and model
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
43 |
-
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
|
44 |
terminators = [
|
45 |
tokenizer.eos_token_id,
|
46 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
47 |
]
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
@spaces.GPU(duration=120)
|
50 |
-
def chat_llama3_8b(message: str,
|
51 |
-
history: list,
|
52 |
-
temperature: float,
|
53 |
-
max_new_tokens: int
|
54 |
-
) -> str:
|
55 |
"""
|
56 |
Generate a streaming response using the llama3-8b model.
|
|
|
57 |
Args:
|
58 |
message (str): The input message.
|
59 |
history (list): The conversation history used by ChatInterface.
|
60 |
temperature (float): The temperature for generating the response.
|
61 |
max_new_tokens (int): The maximum number of new tokens to generate.
|
|
|
62 |
Returns:
|
63 |
str: The generated response.
|
64 |
"""
|
65 |
-
conversation = []
|
66 |
-
|
67 |
for user, assistant in history:
|
68 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
69 |
conversation.append({"role": "user", "content": message})
|
@@ -71,14 +90,15 @@ def chat_llama3_8b(message: str,
|
|
71 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
72 |
|
73 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
74 |
-
|
75 |
generate_kwargs = dict(
|
76 |
-
input_ids=
|
77 |
streamer=streamer,
|
78 |
max_new_tokens=max_new_tokens,
|
79 |
do_sample=True,
|
80 |
temperature=temperature,
|
81 |
eos_token_id=terminators,
|
|
|
82 |
)
|
83 |
if temperature == 0:
|
84 |
generate_kwargs['do_sample'] = False
|
@@ -89,39 +109,27 @@ def chat_llama3_8b(message: str,
|
|
89 |
outputs = []
|
90 |
for text in streamer:
|
91 |
outputs.append(text)
|
92 |
-
#print(outputs)
|
93 |
yield "".join(outputs)
|
94 |
|
95 |
|
96 |
# Gradio block
|
97 |
-
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
98 |
|
99 |
with gr.Blocks(fill_height=True, css=css) as demo:
|
100 |
-
|
101 |
gr.Markdown(DESCRIPTION)
|
|
|
102 |
gr.ChatInterface(
|
103 |
fn=chat_llama3_8b,
|
104 |
chatbot=chatbot,
|
105 |
fill_height=True,
|
106 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
107 |
additional_inputs=[
|
108 |
-
gr.Slider(minimum=0,
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
label="Temperature",
|
113 |
-
render=False),
|
114 |
-
gr.Slider(minimum=128,
|
115 |
-
maximum=9012,
|
116 |
-
step=1,
|
117 |
-
value=512,
|
118 |
-
label="Max new tokens",
|
119 |
-
render=False ),
|
120 |
-
],
|
121 |
-
|
122 |
-
)
|
123 |
|
124 |
gr.Markdown(LICENSE)
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
-
demo.launch(show_error=True)
|
|
|
1 |
+
import spaces
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
|
5 |
+
import torch
|
|
|
6 |
from threading import Thread
|
7 |
|
8 |
# Set an environment variable
|
|
|
37 |
}
|
38 |
|
39 |
"""
|
40 |
+
# Load the tokenizer and model with quantization
|
41 |
+
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
42 |
+
bnb_config = BitsAndBytesConfig(
|
43 |
+
load_in_4bit=True,
|
44 |
+
bnb_4bit_use_double_quant=True,
|
45 |
+
bnb_4bit_quant_type="nf4",
|
46 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
47 |
+
)
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
model_id,
|
52 |
+
device_map="auto",
|
53 |
+
quantization_config=bnb_config,
|
54 |
+
torch_dtype=torch.bfloat16
|
55 |
+
)
|
56 |
+
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
57 |
|
|
|
|
|
|
|
58 |
terminators = [
|
59 |
tokenizer.eos_token_id,
|
60 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
61 |
]
|
62 |
|
63 |
+
SYS_PROMPT = """
|
64 |
+
Extract all relevant keywords and add quantity from the following text and format the result in nested JSON, ignoring personal details and focusing only on the scope of work as shown in the example:
|
65 |
+
Good JSON example: {'lobby': {'frcm': {'replace': {'carpet': 1, 'carpet_pad': 1, 'base': 1, 'window_treatments': 1, 'artwork_and_decorative_accessories': 1, 'portable_lighting': 1, 'upholstered_furniture_and_decorative_pillows': 1, 'millwork': 1} } } }
|
66 |
+
Bad JSON example: {'lobby': { 'frcm': { 'replace': [ 'carpet', 'carpet_pad', 'base', 'window_treatments', 'artwork_and_decorative_accessories', 'portable_lighting', 'upholstered_furniture_and_decorative_pillows', 'millwork'] } } }
|
67 |
+
Make sure to fetch details from the provided text and ignore unnecessary information. The response should be in JSON format only, without any additional comments.
|
68 |
+
"""
|
69 |
+
|
70 |
@spaces.GPU(duration=120)
|
71 |
+
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int):
|
|
|
|
|
|
|
|
|
72 |
"""
|
73 |
Generate a streaming response using the llama3-8b model.
|
74 |
+
|
75 |
Args:
|
76 |
message (str): The input message.
|
77 |
history (list): The conversation history used by ChatInterface.
|
78 |
temperature (float): The temperature for generating the response.
|
79 |
max_new_tokens (int): The maximum number of new tokens to generate.
|
80 |
+
|
81 |
Returns:
|
82 |
str: The generated response.
|
83 |
"""
|
84 |
+
conversation = [{"role": "system", "content": SYS_PROMPT}]
|
85 |
+
|
86 |
for user, assistant in history:
|
87 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
88 |
conversation.append({"role": "user", "content": message})
|
|
|
90 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
91 |
|
92 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
93 |
+
|
94 |
generate_kwargs = dict(
|
95 |
+
input_ids=input_ids,
|
96 |
streamer=streamer,
|
97 |
max_new_tokens=max_new_tokens,
|
98 |
do_sample=True,
|
99 |
temperature=temperature,
|
100 |
eos_token_id=terminators,
|
101 |
+
pad_token_id=tokenizer.eos_token_id
|
102 |
)
|
103 |
if temperature == 0:
|
104 |
generate_kwargs['do_sample'] = False
|
|
|
109 |
outputs = []
|
110 |
for text in streamer:
|
111 |
outputs.append(text)
|
|
|
112 |
yield "".join(outputs)
|
113 |
|
114 |
|
115 |
# Gradio block
|
116 |
+
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
117 |
|
118 |
with gr.Blocks(fill_height=True, css=css) as demo:
|
|
|
119 |
gr.Markdown(DESCRIPTION)
|
120 |
+
|
121 |
gr.ChatInterface(
|
122 |
fn=chat_llama3_8b,
|
123 |
chatbot=chatbot,
|
124 |
fill_height=True,
|
125 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
126 |
additional_inputs=[
|
127 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False),
|
128 |
+
gr.Slider(minimum=128, maximum=9012, step=1, value=512, label="Max new tokens", render=False),
|
129 |
+
]
|
130 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
gr.Markdown(LICENSE)
|
133 |
|
134 |
if __name__ == "__main__":
|
135 |
+
demo.launch(show_error=True, debug=True)
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
accelerate
|
2 |
transformers
|
3 |
-
SentencePiece
|
|
|
|
1 |
accelerate
|
2 |
transformers
|
3 |
+
SentencePiece
|
4 |
+
bitsandbytes
|