File size: 4,737 Bytes
fd3db54
 
 
add7ded
 
 
 
 
fd3db54
248cbe2
 
 
 
 
820777f
248cbe2
820777f
fd3db54
 
add7ded
 
 
 
fd3db54
 
 
 
 
add7ded
 
 
 
fd3db54
 
 
 
248cbe2
 
 
807af7a
 
 
 
 
 
 
 
 
248cbe2
807af7a
 
 
 
248cbe2
807af7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248cbe2
 
add7ded
fd3db54
 
 
 
248cbe2
fd3db54
 
 
 
 
 
 
 
 
 
add7ded
 
 
fd3db54
 
 
 
 
 
 
 
 
 
 
 
add7ded
 
 
fd3db54
248cbe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3db54
248cbe2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
from openai import OpenAI
import os
import logging
import time

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

ACCESS_TOKEN = os.getenv("HF_TOKEN")


start_time = time.time()
logger.info("Loading Client....")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

end_time = time.time()
logger.info(f"Client Loaded. Time taken : {end_time - start_time} seconds.")

#interact with API
def respond(
    message,
    history,
    temperature,
    max_tokens,
):
    SYS_PROMPT = """
                  Extract the following information from the given text:
            Identify the specific areas where the work needs to be done and Add the furniture that has to be changed.
            Do not specify the work that has to be done.
            Format the extracted information in the following JSON structure:

            {
              "Area Type1": {
                  "Furnture1",
                  "Furnture2",
                  ...
              }
              "Area Type2": {
                   "Furnture1",
                  "Furnture2",
                  ...
              }
            }

            Requirements:
            1. Each area type (e.g., lobby, bar, etc.) should have its own node.
            3. List the furniture on which the work needs to be performed without specifying the work or units of items.
            4. Ignore any personal information or irrelevant details.
            5. Follow the JSON pattern strictly and ensure clarity and accuracy in the extracted information.

            Example:

            Given the paragraph: "In the lobby, replace 5 light fixtures and remove 2 old carpets. In the bar,
            install 3 new tables and remove 4 broken chairs."

            The JSON output should be:
            {
              "Lobby": {
                  "Light fixtures"
                  "Old carpets"
              },
              "Bar": {
                  "New tables"
                  "Broken chairs"
                }
              }
            }

            Please ensure that the output JSON is well-structured and includes only relevant details about the work to be done.
                  """
    messages = [{"role": "system", "content": SYS_PROMPT}]
    
    if len(history) == 0:
      pass
    else:
      history.pop()

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    start_time = time.time()
    logger.info("Generating Response....")
    
    for message in  client.chat.completions.create(
        model="meta-llama/Meta-Llama-3.1-8B-Instruct",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        messages=messages,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

     end_time = time.time()
    logger.info(f"Response Generated. Time taken : {end_time - start_time} seconds.")


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''

LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}
"""

chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    gr.Markdown(DESCRIPTION)

    gr.ChatInterface(
        fn=respond,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=2000, step=1, value=2000, label="Max new tokens", render=False),
        ]
    )

    gr.Markdown(LICENSE)

if __name__ == "__main__":
    try:
        demo.launch(show_error=True, debug = True)
    except Exception as e:
        logger.error(f"Error launching Gradio demo: {e}")