Spaces:
Build error
Build error
File size: 4,737 Bytes
fd3db54 add7ded fd3db54 248cbe2 820777f 248cbe2 820777f fd3db54 add7ded fd3db54 add7ded fd3db54 248cbe2 807af7a 248cbe2 807af7a 248cbe2 807af7a 248cbe2 add7ded fd3db54 248cbe2 fd3db54 add7ded fd3db54 add7ded fd3db54 248cbe2 fd3db54 248cbe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
from openai import OpenAI
import os
import logging
import time
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
ACCESS_TOKEN = os.getenv("HF_TOKEN")
start_time = time.time()
logger.info("Loading Client....")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
end_time = time.time()
logger.info(f"Client Loaded. Time taken : {end_time - start_time} seconds.")
#interact with API
def respond(
message,
history,
temperature,
max_tokens,
):
SYS_PROMPT = """
Extract the following information from the given text:
Identify the specific areas where the work needs to be done and Add the furniture that has to be changed.
Do not specify the work that has to be done.
Format the extracted information in the following JSON structure:
{
"Area Type1": {
"Furnture1",
"Furnture2",
...
}
"Area Type2": {
"Furnture1",
"Furnture2",
...
}
}
Requirements:
1. Each area type (e.g., lobby, bar, etc.) should have its own node.
3. List the furniture on which the work needs to be performed without specifying the work or units of items.
4. Ignore any personal information or irrelevant details.
5. Follow the JSON pattern strictly and ensure clarity and accuracy in the extracted information.
Example:
Given the paragraph: "In the lobby, replace 5 light fixtures and remove 2 old carpets. In the bar,
install 3 new tables and remove 4 broken chairs."
The JSON output should be:
{
"Lobby": {
"Light fixtures"
"Old carpets"
},
"Bar": {
"New tables"
"Broken chairs"
}
}
}
Please ensure that the output JSON is well-structured and includes only relevant details about the work to be done.
"""
messages = [{"role": "system", "content": SYS_PROMPT}]
if len(history) == 0:
pass
else:
history.pop()
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
start_time = time.time()
logger.info("Generating Response....")
for message in client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
messages=messages,
):
token = message.choices[0].delta.content
response += token
yield response
end_time = time.time()
logger.info(f"Response Generated. Time taken : {end_time - start_time} seconds.")
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''
LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=respond,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False),
gr.Slider(minimum=128, maximum=2000, step=1, value=2000, label="Max new tokens", render=False),
]
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
try:
demo.launch(show_error=True, debug = True)
except Exception as e:
logger.error(f"Error launching Gradio demo: {e}") |