File size: 5,114 Bytes
0e289da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
import os
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
from accelerate import init_empty_weights, infer_auto_device_map, disk_offload

# Set environment variables
HF_TOKEN = os.getenv("HF_TOKEN")

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''

LICENSE = """
<p/>

---
For more information, visit our [website](https://contentease.ai).
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}
"""

def initialize_model(model_name, max_memory=None):
    device = torch.device('cpu')
    
    # Load model configuration
    config = AutoConfig.from_pretrained(model_name)
    
    with init_empty_weights():
        # Initialize model with empty weights
        model = AutoModelForCausalLM.from_config(config)
    
    # Create device map based on memory constraints
    device_map = infer_auto_device_map(
        model, max_memory=max_memory, no_split_module_classes=["GPTNeoXLayer"], dtype="float16"
    )
    
    # Determine if offloading is needed
    needs_offloading = any(device == 'disk' for device in device_map.values())
    
    if needs_offloading:
        # Load model for offloading
        model = AutoModelForCausalLM.from_pretrained(
            model_name, device_map=device_map, offload_folder="offload",
            offload_state_dict=True, torch_dtype=torch.float16
        )
        offload_directory = "offload/"
        # Offload model to disk
        disk_offload(model=model, offload_dir=offload_directory)
    else:
        # Load model normally to specified device
        model = AutoModelForCausalLM.from_pretrained(
            model_name, torch_dtype=torch.float16
        )
        model.to(device)
    
    return model

try:
    # Initialize the model and tokenizer
    model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
    model = initialize_model(model_name, max_memory={"cpu": "GiB"})
    tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_TOKEN)
except Exception as e:
    print(f"Error initializing model: {e}")
    exit(1)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("")
]

def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    message += " Extract all relevant keywords and add quantity from the following text and format the result in nested JSON:"
    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.95,
                label="Temperature",
                render=False
            ),
            gr.Slider(
                minimum=128,
                maximum=9012,
                step=1,
                value=512,
                label="Max new tokens",
                render=False
            ),
        ]
    )
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.launch(server_port=8000, share=True)