File size: 9,976 Bytes
0edef99
b098452
 
 
 
 
 
 
 
0edef99
b098452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edef99
b098452
 
 
 
 
 
0edef99
 
b098452
 
 
 
 
 
0edef99
b098452
 
 
 
 
 
 
 
0edef99
b098452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edef99
b098452
 
 
 
 
0edef99
b098452
 
 
 
0edef99
b098452
 
 
 
 
 
0edef99
b098452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edef99
 
b098452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edef99
b098452
 
0edef99
b098452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edef99
b098452
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gradio as gr
import os
import time
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import torch
from threading import Thread
import logging
import spaces
from functools import lru_cache

print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''

LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}
"""

# Load the tokenizer and model with quantization
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

@lru_cache(maxsize=1)
def load_model_and_tokenizer():
    try:
        start_time = time.time()
        logger.info("Loading tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        logger.info("Loading model...")
        model = AutoModelForCausalLM.from_pretrained(
            model_id,
            device_map="auto",
            quantization_config=bnb_config,
            torch_dtype=torch.bfloat16
        )
        model.generation_config.pad_token_id = tokenizer.pad_token_id
        end_time = time.time()
        logger.info(f"Model and tokenizer loaded successfully in {end_time - start_time} seconds.")
        return model, tokenizer
    except Exception as e:
        logger.error(f"Error loading model or tokenizer: {e}")
        raise

try:
    model, tokenizer = load_model_and_tokenizer()
except Exception as e:
    logger.error(f"Failed to load model and tokenizer: {e}")
    raise

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

# SYS_PROMPT = """
# Extract all relevant keywords and add quantity from the following text and format the result in nested JSON, ignoring personal details and focusing only on the scope of work as shown in the example:
# Good JSON example: {'lobby': {'frcm': {'replace': {'carpet': 1, 'carpet_pad': 1, 'base': 1, 'window_treatments': 1, 'artwork_and_decorative_accessories': 1, 'portable_lighting': 1, 'upholstered_furniture_and_decorative_pillows': 1, 'millwork': 1} } } }
# Bad JSON example: {'lobby': { 'frcm': { 'replace': [ 'carpet', 'carpet_pad', 'base', 'window_treatments', 'artwork_and_decorative_accessories', 'portable_lighting', 'upholstered_furniture_and_decorative_pillows', 'millwork'] } } }
# Make sure to fetch details from the provided text and ignore unnecessary information. The response should be in JSON format only, without any additional comments.
# """

SYS_PROMPT = """
Extract all relevant keywords and add quantities from the following text and format the result in nested JSON, ignoring personal details and focusing only on the area and furniture items as shown in the example. Each item should have a count, which will be set to 1 for simplicity. The response should be in JSON format only, without any additional comments.

Good JSON example:{
  "Lobby Area/Entrance": {
    "Vinyl wall covering": 1,
    "Decorative hardwired lighting": 1
  },
  "Lobby": {
    "Carpet, carpet pad, and base": 1,
    "Window treatments": 1,
    "Artwork and decorative accessories": 1,
    "Portable lighting": 1,
    "Upholstered furniture and decorative pillows": 1,
    "Millwork": 1
  }
}
Make sure to fetch details from the provided text and ignore unnecessary information. The response should be in JSON format only, without any additional comments.

Task:
Convert the provided extracted text into the JSON format described above.

Provided Text:

PROPERTY IMPROVEMENT PLAN
PREPARED FOR:
Springfield, IL
To be relicensed as Hilton Garden Inn
...
Patios/The Terrace - Install patio decorative lighting. Install patio furniture. (lounge chairs, chaise, dining tables/chairs)
...
Lobby Area - Replace carpet, carpet pad, and base. Replace window treatments. Replace artwork and decorative accessories. Replace portable lighting. (floor lamps, table lamps) Replace upholstered furniture and decorative pillows. Replace millwork. Replace the television(s).
...
Registration Area - Replace vinyl wall covering. Replace hard surface floor covering. Replace artwork. Install new signature graphics on the back wall.
...

Expected Output (JSON format):
{
  "Patios/The Terrace": {
    "Patio decorative lighting": 1,
    "Lounge chairs": 1,
    "Chaise": 1,
    "Dining tables": 1,
    "Dining chairs": 1,
    "Patio furniture": 1
  },
  "Lobby Area": {
    "Carpet, carpet pad, and base": 1,
    "Window treatments": 1,
    "Artwork and decorative accessories": 1,
    "Portable lighting (floor lamps, table lamps)": 1,
    "Upholstered furniture and decorative pillows": 1,
    "Millwork": 1,
    "Television(s)": 1
  },
  "Registration Area": {
    "Vinyl wall covering": 1,
    "Hard surface floor covering": 1,
    "Artwork (new signature graphics on the back wall)": 1
  }
}

"""
def chunk_text(text, chunk_size=5000):
    """
    Splits the input text into chunks of specified size.
    
    Args:
        text (str): The input text to be chunked.
        chunk_size (int): The size of each chunk in tokens.
        
    Returns:
        list: A list of text chunks.
    """
    words = text.split()
    chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
    logger.info(f"Total chunks created: {len(chunks)}")
    return chunks

def combine_responses(responses):
    """
    Combines the responses from all chunks into a final output string.
    
    Args:
        responses (list): A list of responses from each chunk.
        
    Returns:
        str: The combined output string.
    """
    combined_output = " ".join(responses)
    return combined_output

def generate_response_for_chunk(chunk, history, temperature, max_new_tokens):
    start_time = time.time()
    if len(history) == 0:
        pass
    else:
        history.pop()
    conversation = [{"role": "system", "content": SYS_PROMPT}]
    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": chunk})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
        pad_token_id=tokenizer.eos_token_id
    )
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
    
    end_time = time.time()
    logger.info(f"Time taken for generating response for a chunk: {end_time - start_time} seconds")
    
    return "".join(outputs)

@spaces.GPU(duration=110)
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int):
    """
    Generate a streaming response using the llama3-8b model with chunking.
    
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
        
    Returns:
        str: The generated response.
    """
    try:
        start_time = time.time()
        
        chunks = chunk_text(message)
        responses = []
        count=0
        for chunk in chunks:
            logger.info(f"Processing chunk {count+1}/{len(chunks)}")
            response = generate_response_for_chunk(chunk, history, temperature, max_new_tokens)
            responses.append(response)
            count+=1
        final_output = combine_responses(responses)
        
        end_time = time.time()
        logger.info(f"Total time taken for generating response: {end_time - start_time} seconds")
        
        yield final_output
    except Exception as e:
        logger.error(f"Error generating response: {e}")
        yield "An error occurred while generating the response. Please try again."

# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    gr.Markdown(DESCRIPTION)
    
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=2000, step=1, value=700, label="Max new tokens", render=False),
        ]
    )
    
    gr.Markdown(LICENSE)
    
if __name__ == "__main__":
    try:
        demo.launch(show_error=True)
    except Exception as e:
        logger.error(f"Error launching Gradio demo: {e}")