import gradio as gr import os import torch from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer from threading import Thread from accelerate import init_empty_weights, infer_auto_device_map, disk_offload # Set environment variables HF_TOKEN = os.getenv("HF_TOKEN") DESCRIPTION = '''

ContenteaseAI custom trained model

''' LICENSE = """

--- For more information, visit our [website](https://contentease.ai). """ PLACEHOLDER = """

ContenteaseAI Custom AI trained model

Enter the text extracted from the PDF:

""" css = """ h1 { text-align: center; display: block; } """ def initialize_model(model_name, max_memory=None): device = torch.device('cpu') # Load model configuration config = AutoConfig.from_pretrained(model_name) with init_empty_weights(): # Initialize model with empty weights model = AutoModelForCausalLM.from_config(config) # Create device map based on memory constraints device_map = infer_auto_device_map( model, max_memory=max_memory, no_split_module_classes=["GPTNeoXLayer"], dtype="float16" ) # Determine if offloading is needed needs_offloading = any(device == 'disk' for device in device_map.values()) if needs_offloading: # Load model for offloading model = AutoModelForCausalLM.from_pretrained( model_name, device_map=device_map, offload_folder="offload", offload_state_dict=True, torch_dtype=torch.float16 ) offload_directory = "offload/" # Offload model to disk disk_offload(model=model, offload_dir=offload_directory) else: # Load model normally to specified device model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16 ) model.to(device) return model try: # Initialize the model and tokenizer model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" model = initialize_model(model_name, max_memory={"cpu": "GiB"}) tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_TOKEN) except Exception as e: print(f"Error initializing model: {e}") exit(1) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("") ] def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str: """ Generate a streaming response using the llama3-8b model. Args: message (str): The input message. history (list): The conversation history used by ChatInterface. temperature (float): The temperature for generating the response. max_new_tokens (int): The maximum number of new tokens to generate. Returns: str: The generated response. """ conversation = [] message += " Extract all relevant keywords and add quantity from the following text and format the result in nested JSON:" for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Gradio block chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') with gr.Blocks(fill_height=True, css=css) as demo: gr.Markdown(DESCRIPTION) gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False ), gr.Slider( minimum=128, maximum=9012, step=1, value=512, label="Max new tokens", render=False ), ] ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch(server_port=8000, share=True)