Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import cv2 | |
import os | |
import pymysql | |
import boto3 | |
from io import BytesIO | |
import io | |
from PIL import Image | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import numpy as np | |
# Initialize AWS S3 client | |
aws_access_key = "AKIAXECLNGBK5SXL2CER" | |
aws_secret_key = "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" | |
aws_region = "eu-west-3" | |
# Initialize the S3 client using environment variables | |
s3 = boto3.client( | |
's3', | |
aws_access_key_id=aws_access_key, | |
aws_secret_access_key=aws_secret_key, | |
region_name=aws_region | |
) | |
S3_BUCKET_NAME = 'savingbuckett5' | |
S3_FOLDER = 'Video-Processing/' | |
# Load YOLO model from the local directory (ensure the model is uploaded to your Hugging Face space) | |
model = YOLO("./YOLO_Model_v5.pt") | |
RDS_HOST = "database-2.cnqamusmkwon.eu-north-1.rds.amazonaws.com" | |
RDS_PORT = 3306 | |
DB_USER = "root" | |
DB_PASSWORD = "mkmk162345" | |
DB_NAME = "traffic" | |
def get_connection(): | |
return pymysql.connect( | |
host=RDS_HOST, | |
port=RDS_PORT, | |
user=DB_USER, | |
password=DB_PASSWORD, | |
database=DB_NAME, | |
cursorclass=pymysql.cursors.DictCursor | |
) | |
def increment_road(id_value, increment_value, is_in=True): | |
try: | |
connection = get_connection() | |
with connection.cursor() as cursor: | |
select_sql = "SELECT id, road_in, road_out, road_current FROM traffic_counter_road WHERE id = %s" | |
cursor.execute(select_sql, (id_value,)) | |
result = cursor.fetchone() | |
if result: | |
with connection.cursor() as cursor: | |
if is_in: | |
new_road_in = result['road_in'] + increment_value | |
new_road_current = new_road_in - result['road_out'] | |
update_sql = """ | |
UPDATE traffic_counter_road | |
SET road_in = %s, road_current = %s | |
WHERE id = %s | |
""" | |
cursor.execute(update_sql, (new_road_in, new_road_current, id_value)) | |
else: | |
new_road_out = result['road_out'] + increment_value | |
new_road_current = result['road_in'] - new_road_out | |
update_sql = """ | |
UPDATE traffic_counter_road | |
SET road_out = %s, road_current = %s | |
WHERE id = %s | |
""" | |
cursor.execute(update_sql, (new_road_out, new_road_current, id_value)) | |
connection.commit() | |
except pymysql.MySQLError as e: | |
print(f"Error: {e}") | |
finally: | |
if connection: | |
connection.close() | |
def upload_frame_to_s3(frame, frame_number): | |
# Convert the OpenCV frame (BGR) to a PIL image (RGB) | |
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
# Save the PIL image to an in-memory file | |
buffer = BytesIO() | |
pil_image.save(buffer, format="JPEG") | |
buffer.seek(0) | |
# Define the S3 object key (file name) | |
s3_key = f"{S3_FOLDER}frame_{frame_number}.jpg" | |
# Upload the image to S3 | |
s3.upload_fileobj(buffer, S3_BUCKET_NAME, s3_key) | |
print(f"Uploaded frame {frame_number} to S3 at {S3_BUCKET_NAME}/{s3_key}") | |
def process_video(video_path, count_type): | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
raise ValueError("Error opening video file.") | |
box = (1650, 900, 2816, 1500) # Define the area for license plates | |
counter = 0 | |
License_plate = set() | |
class_names = ['License Plate', 'Car', 'Motorcycle', 'Truck'] | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
results = model.track(frame, persist=True) | |
for result in results: | |
for boxes in result.boxes: | |
bbox = boxes.xyxy[0].cpu().numpy() | |
class_id = int(boxes.cls[0].cpu().numpy()) | |
conf = boxes.conf[0].cpu().numpy() | |
id = int(boxes.id[0].cpu().numpy()) if boxes.id is not None else -1 | |
x1, y1, x2, y2 = map(int, bbox) | |
cropped_object = frame[y1:y2, x1:x2] | |
# cv2.rectangle(frame, (x1, y1), (x2, y2), (208, 38, 7), 3) | |
# label = f'ID: {id}, class: {class_names[class_id]} Conf: {conf:.2f}' | |
# cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (208, 38, 7), 2, cv2.LINE_AA) | |
# Check if the object is in the defined box for the license plate | |
if x1 >= box[0] and y1 >= box[1] and x2 <= box[2] and y2 <= box[3]: | |
if id not in License_plate: | |
License_plate.add(id) | |
if count_type == "in": | |
print("It's counting IN") | |
increment_road(1, 1, is_in=True) # Update the road traffic database (count in) | |
elif count_type == "out": | |
print("It's counting OUT") | |
increment_road(1, 1, is_in=False) # Update the road traffic database (count out) | |
print("It's now uploading") | |
upload_frame_to_s3(cropped_object, counter) # Save cropped license plate to S3 | |
counter += 1 | |
def insert_data(license_value): | |
try: | |
connection = get_connection() | |
with connection.cursor() as cursor: | |
insert_sql = """ | |
INSERT INTO license_plates (license_plate) | |
VALUES (%s) | |
""" | |
cursor.execute(insert_sql, (license_value)) | |
connection.commit() | |
except pymysql.MySQLError as e: | |
print(f"Error: {e}") | |
finally: | |
if connection: | |
connection.close() | |
# Gradio function for counting vehicles in | |
def count_in(video): | |
process_video(video, count_type="in") | |
return "Processed vehicles counting 'in' successfully." | |
# Gradio function for counting vehicles out | |
def count_out(video): | |
process_video(video, count_type="out") | |
return "Processed vehicles counting 'out' successfully." | |
# tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
# model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True) | |
def ocr(image): | |
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
# model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id).to(device) | |
# # if isinstance(image, np.ndarray): | |
# # image = Image.fromarray(image) | |
# # Save the image to a temporary file in /tmp directory | |
# temp_image_path = "/tmp/temp_image.jpg" | |
# image.save(temp_image_path, format='JPEG') | |
# # Perform OCR on the image | |
# res = model.chat(tokenizer, image, ocr_type='ocr') | |
# # Return the extracted text | |
# return res | |
try: | |
# Convert image to PIL Image if it's a NumPy array | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id).to(device) | |
# Ensure the /tmp directory exists | |
temp_dir = "/tmp" | |
if not os.path.exists(temp_dir): | |
os.makedirs(temp_dir) | |
# Save the image to a temporary file in /tmp directory | |
temp_image_path = os.path.join(temp_dir, "temp_image.jpg") | |
image.save(temp_image_path, format='JPEG') | |
# Perform OCR on the image using the file path | |
res = model.chat(tokenizer=tokenizer, image=temp_image_path, ocr_type='ocr') # Pass the file path here | |
output_text = tokenizer.decode(res[0], skip_special_tokens=True) | |
return output_text | |
# Return the extracted text | |
# return res['text'] # Adjust this based on the actual return structure | |
except Exception as e: | |
return str(e) | |
# Create Gradio interfaces for two endpoints: count_in and count_out | |
iface_in = gr.Interface( | |
fn=count_in, | |
inputs="video", | |
outputs=None, | |
api_name="count_in", # This explicitly sets the api_name | |
title="YOLO Video Object Detection (Count In)", | |
description="Upload a video to count vehicles 'in' and save frames to S3." | |
) | |
iface_out = gr.Interface( | |
fn=count_out, | |
inputs="video", | |
outputs=None, | |
api_name="count_out", # This explicitly sets the api_name | |
title="YOLO Video Object Detection (Count Out)", | |
description="Upload a video to count vehicles 'out' and save frames to S3." | |
) | |
iface_ocr = gr.Interface( | |
fn=ocr, | |
inputs="image", | |
# inputs=gr.Image(type="pil"), | |
outputs="text", | |
api_name="ocr", # This explicitly sets the api_name | |
title="OCR Image Text Extraction", | |
) | |
# Create a tabbed interface for both endpoints | |
iface = gr.TabbedInterface([iface_in, iface_out, iface_ocr], ["Count In", "Count Out", "OCR"]) | |
# Launch the Gradio app | |
iface.launch() | |