ggoknar
commited on
Commit
·
d3d83c1
1
Parent(s):
f34dc34
Fixed STT to TTS and uses streaming TTS
Browse files
app.py
CHANGED
@@ -19,6 +19,7 @@ from scipy.io.wavfile import write
|
|
19 |
from pydub import AudioSegment
|
20 |
import ffmpeg
|
21 |
|
|
|
22 |
import librosa
|
23 |
import torchaudio
|
24 |
from TTS.api import TTS
|
@@ -31,7 +32,6 @@ from TTS.utils.generic_utils import get_user_data_dir
|
|
31 |
# Could not make play audio next work seemlesly on current Gradio with autoplay so this is a workaround
|
32 |
AUDIO_WAIT_MODIFIER = float(os.environ.get("AUDIO_WAIT_MODIFIER", 1))
|
33 |
|
34 |
-
|
35 |
# This will trigger downloading model
|
36 |
print("Downloading if not downloaded Coqui XTTS V1")
|
37 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
|
@@ -68,7 +68,7 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
68 |
# will use api to restart space on a unrecoverable error
|
69 |
api = HfApi(token=HF_TOKEN)
|
70 |
|
71 |
-
repo_id = "
|
72 |
|
73 |
default_system_message = """
|
74 |
You are Mistral, a large language model trained and provided by Mistral, architecture of you is decoder-based LM. Your voice backend or text to speech TTS backend is provided via Coqui technology. You are right now served on Huggingface spaces.
|
@@ -97,12 +97,15 @@ import numpy as np
|
|
97 |
from gradio_client import Client
|
98 |
from huggingface_hub import InferenceClient
|
99 |
|
100 |
-
|
101 |
# This client is down
|
102 |
# whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
|
103 |
# Replacement whisper client, it may be time limited
|
104 |
whisper_client = Client("https://sanchit-gandhi-whisper-jax.hf.space")
|
105 |
-
text_client = InferenceClient(
|
|
|
|
|
|
|
106 |
|
107 |
|
108 |
###### COQUI TTS FUNCTIONS ######
|
@@ -180,13 +183,17 @@ def generate(
|
|
180 |
|
181 |
|
182 |
def transcribe(wav_path):
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
190 |
|
191 |
|
192 |
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
|
@@ -257,6 +264,73 @@ def get_voice(prompt, language, latent_tuple, suffix="0"):
|
|
257 |
return wav_filename
|
258 |
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
def get_sentence(history, system_prompt=""):
|
261 |
history = [] if history is None else history
|
262 |
|
@@ -322,55 +396,33 @@ def generate_speech(history):
|
|
322 |
try:
|
323 |
# generate speech using precomputed latents
|
324 |
# This is not streaming but it will be fast
|
325 |
-
wav = get_voice(
|
|
|
326 |
sentence, language, latent_map["Female_Voice"], suffix=len(wav_list)
|
327 |
)
|
328 |
-
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
wait_time = AUDIO_WAIT_MODIFIER * wait_time
|
332 |
print("Sleeping till audio end")
|
333 |
time.sleep(wait_time)
|
334 |
-
|
335 |
-
# Replace inside try with below to use streaming, though not perfectly working as each it will multiprocess with mistral generation
|
336 |
-
# And would produce artifacts
|
337 |
-
# giving sentence suffix so we can merge all to single audio at end
|
338 |
-
# On mobile there is no autoplay support due to mobile security!
|
339 |
-
"""
|
340 |
-
t_inference = time.time()
|
341 |
-
chunks = model.inference_stream(
|
342 |
-
sentence,
|
343 |
-
language,
|
344 |
-
latent_map["Female_Voice"][0],
|
345 |
-
latent_map["Female_Voice"][2],)
|
346 |
-
|
347 |
-
first_chunk=True
|
348 |
-
wav_chunks=[]
|
349 |
-
for i, chunk in enumerate(chunks):
|
350 |
-
if first_chunk:
|
351 |
-
first_chunk_time = time.time() - t_inference
|
352 |
-
print(f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n")
|
353 |
-
first_chunk=False
|
354 |
-
|
355 |
-
wav_chunks.append(chunk)
|
356 |
-
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
|
357 |
-
|
358 |
-
out_file = f'{i}.wav'
|
359 |
-
write(out_file, 24000, chunk.detach().cpu().numpy().squeeze())
|
360 |
-
audio = AudioSegment.from_file(out_file)
|
361 |
-
audio.export(out_file, format='wav')
|
362 |
-
|
363 |
-
yield (gr.Audio.update(value=out_file,autoplay=True) , history)
|
364 |
-
#chunk sleep else next sentence may come in fast
|
365 |
-
wait_time= librosa.get_duration(path=out_file)
|
366 |
-
time.sleep(wait_time)
|
367 |
-
|
368 |
-
wav = torch.cat(wav_chunks, dim=0)
|
369 |
-
filename= f"output_{len(wav_list)}.wav"
|
370 |
-
torchaudio.save(filename, wav.squeeze().unsqueeze(0).cpu(), 24000)
|
371 |
-
wav_list.append(filename)
|
372 |
-
"""
|
373 |
-
|
374 |
except RuntimeError as e:
|
375 |
if "device-side assert" in str(e):
|
376 |
# cannot do anything on cuda device side error, need tor estart
|
@@ -387,6 +439,40 @@ def generate_speech(history):
|
|
387 |
print("RuntimeError: non device-side assert error:", str(e))
|
388 |
raise e
|
389 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
|
391 |
with gr.Blocks(title=title) as demo:
|
392 |
gr.Markdown(DESCRIPTION)
|
@@ -410,12 +496,14 @@ with gr.Blocks(title=title) as demo:
|
|
410 |
|
411 |
with gr.Row():
|
412 |
audio = gr.Audio(
|
413 |
-
|
414 |
streaming=False,
|
415 |
autoplay=False,
|
416 |
-
|
417 |
show_label=True,
|
418 |
)
|
|
|
|
|
419 |
|
420 |
clear_btn = gr.ClearButton([chatbot, audio])
|
421 |
|
@@ -432,7 +520,7 @@ with gr.Blocks(title=title) as demo:
|
|
432 |
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
|
433 |
|
434 |
file_msg = btn.stop_recording(
|
435 |
-
add_file, [chatbot, btn], [chatbot], queue=False
|
436 |
).then(generate_speech, chatbot, [audio, chatbot])
|
437 |
|
438 |
gr.Markdown(
|
|
|
19 |
from pydub import AudioSegment
|
20 |
import ffmpeg
|
21 |
|
22 |
+
import io, wave
|
23 |
import librosa
|
24 |
import torchaudio
|
25 |
from TTS.api import TTS
|
|
|
32 |
# Could not make play audio next work seemlesly on current Gradio with autoplay so this is a workaround
|
33 |
AUDIO_WAIT_MODIFIER = float(os.environ.get("AUDIO_WAIT_MODIFIER", 1))
|
34 |
|
|
|
35 |
# This will trigger downloading model
|
36 |
print("Downloading if not downloaded Coqui XTTS V1")
|
37 |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
|
|
|
68 |
# will use api to restart space on a unrecoverable error
|
69 |
api = HfApi(token=HF_TOKEN)
|
70 |
|
71 |
+
repo_id = "coqui/voice-chat-with-lama"
|
72 |
|
73 |
default_system_message = """
|
74 |
You are Mistral, a large language model trained and provided by Mistral, architecture of you is decoder-based LM. Your voice backend or text to speech TTS backend is provided via Coqui technology. You are right now served on Huggingface spaces.
|
|
|
97 |
from gradio_client import Client
|
98 |
from huggingface_hub import InferenceClient
|
99 |
|
100 |
+
WHISPER_TIMEOUT = int(os.environ.get("WHISPER_TIMEOUT", 30))
|
101 |
# This client is down
|
102 |
# whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
|
103 |
# Replacement whisper client, it may be time limited
|
104 |
whisper_client = Client("https://sanchit-gandhi-whisper-jax.hf.space")
|
105 |
+
text_client = InferenceClient(
|
106 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
107 |
+
timeout=WHISPER_TIMEOUT,
|
108 |
+
)
|
109 |
|
110 |
|
111 |
###### COQUI TTS FUNCTIONS ######
|
|
|
183 |
|
184 |
|
185 |
def transcribe(wav_path):
|
186 |
+
try:
|
187 |
+
# get first element from whisper_jax and strip it to delete begin and end space
|
188 |
+
return whisper_client.predict(
|
189 |
+
wav_path, # str (filepath or URL to file) in 'inputs' Audio component
|
190 |
+
"transcribe", # str in 'Task' Radio component
|
191 |
+
False, # return_timestamps=False for whisper-jax https://gist.github.com/sanchit-gandhi/781dd7003c5b201bfe16d28634c8d4cf#file-whisper_jax_endpoint-py
|
192 |
+
api_name="/predict",
|
193 |
+
)[0].strip()
|
194 |
+
except:
|
195 |
+
gr.Warning("There was a problem with Whisper endpoint, telling a joke for you.")
|
196 |
+
return "There was a problem with my voice, tell me joke"
|
197 |
|
198 |
|
199 |
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
|
|
|
264 |
return wav_filename
|
265 |
|
266 |
|
267 |
+
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000):
|
268 |
+
# This will create a wave header then append the frame input
|
269 |
+
# It should be first on a streaming wav file
|
270 |
+
# Other frames better should not have it (else you will hear some artifacts each chunk start)
|
271 |
+
wav_buf = io.BytesIO()
|
272 |
+
with wave.open(wav_buf, "wb") as vfout:
|
273 |
+
vfout.setnchannels(channels)
|
274 |
+
vfout.setsampwidth(sample_width)
|
275 |
+
vfout.setframerate(sample_rate)
|
276 |
+
vfout.writeframes(frame_input)
|
277 |
+
|
278 |
+
wav_buf.seek(0)
|
279 |
+
return wav_buf.read()
|
280 |
+
|
281 |
+
|
282 |
+
def get_voice_streaming(prompt, language, latent_tuple, suffix="0"):
|
283 |
+
gpt_cond_latent, diffusion_conditioning, speaker_embedding = latent_tuple
|
284 |
+
try:
|
285 |
+
t0 = time.time()
|
286 |
+
chunks = model.inference_stream(
|
287 |
+
prompt,
|
288 |
+
language,
|
289 |
+
gpt_cond_latent,
|
290 |
+
speaker_embedding,
|
291 |
+
)
|
292 |
+
|
293 |
+
first_chunk = True
|
294 |
+
for i, chunk in enumerate(chunks):
|
295 |
+
if first_chunk:
|
296 |
+
first_chunk_time = time.time() - t0
|
297 |
+
metrics_text = f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
|
298 |
+
first_chunk = False
|
299 |
+
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
|
300 |
+
|
301 |
+
# In case output is required to be multiple voice files
|
302 |
+
# out_file = f'{char}_{i}.wav'
|
303 |
+
# write(out_file, 24000, chunk.detach().cpu().numpy().squeeze())
|
304 |
+
# audio = AudioSegment.from_file(out_file)
|
305 |
+
# audio.export(out_file, format='wav')
|
306 |
+
# return out_file
|
307 |
+
# directly return chunk as bytes for streaming
|
308 |
+
chunk = chunk.detach().cpu().numpy().squeeze()
|
309 |
+
chunk = (chunk * 32767).astype(np.int16)
|
310 |
+
|
311 |
+
yield chunk.tobytes()
|
312 |
+
|
313 |
+
except RuntimeError as e:
|
314 |
+
if "device-side assert" in str(e):
|
315 |
+
# cannot do anything on cuda device side error, need tor estart
|
316 |
+
print(
|
317 |
+
f"Exit due to: Unrecoverable exception caused by prompt:{sentence}",
|
318 |
+
flush=True,
|
319 |
+
)
|
320 |
+
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
321 |
+
print("Cuda device-assert Runtime encountered need restart")
|
322 |
+
|
323 |
+
# HF Space specific.. This error is unrecoverable need to restart space
|
324 |
+
api.restart_space(repo_id=repo_id)
|
325 |
+
else:
|
326 |
+
print("RuntimeError: non device-side assert error:", str(e))
|
327 |
+
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
328 |
+
return None
|
329 |
+
return None
|
330 |
+
except:
|
331 |
+
return None
|
332 |
+
|
333 |
+
|
334 |
def get_sentence(history, system_prompt=""):
|
335 |
history = [] if history is None else history
|
336 |
|
|
|
396 |
try:
|
397 |
# generate speech using precomputed latents
|
398 |
# This is not streaming but it will be fast
|
399 |
+
# wav = get_voice(sentence,language, latent_map["Female_Voice"], suffix=len(wav_list))
|
400 |
+
audio_stream = get_voice_streaming(
|
401 |
sentence, language, latent_map["Female_Voice"], suffix=len(wav_list)
|
402 |
)
|
403 |
+
wav_chunks = wave_header_chunk()
|
404 |
+
frame_length = 0
|
405 |
+
for chunk in audio_stream:
|
406 |
+
try:
|
407 |
+
wav_chunks += chunk
|
408 |
+
frame_length += len(chunk)
|
409 |
+
except:
|
410 |
+
# hack to continue on playing. sometimes last chunk is empty , will be fixed on next TTS
|
411 |
+
continue
|
412 |
+
|
413 |
+
wav_list.append(wav_chunks)
|
414 |
+
yield (gr.Audio.update(value=wav_chunks, autoplay=True), history)
|
415 |
+
|
416 |
+
# Streaming wait time calculation
|
417 |
+
# audio_length = frame_length / sample_width/ frame_rate
|
418 |
+
wait_time = frame_length / 2 / 24000 + 0.5 # plus 500ms
|
419 |
+
|
420 |
+
# for non streaming
|
421 |
+
# wait_time= librosa.get_duration(path=wav)
|
422 |
+
|
423 |
wait_time = AUDIO_WAIT_MODIFIER * wait_time
|
424 |
print("Sleeping till audio end")
|
425 |
time.sleep(wait_time)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
except RuntimeError as e:
|
427 |
if "device-side assert" in str(e):
|
428 |
# cannot do anything on cuda device side error, need tor estart
|
|
|
439 |
print("RuntimeError: non device-side assert error:", str(e))
|
440 |
raise e
|
441 |
|
442 |
+
# Spoken on autoplay everysencen now produce a concataned one at the one
|
443 |
+
# requires pip install ffmpeg-python
|
444 |
+
|
445 |
+
# files_to_concat= [ffmpeg.input(w) for w in wav_list]
|
446 |
+
# combined_file_name="combined.wav"
|
447 |
+
# ffmpeg.concat(*files_to_concat,v=0, a=1).output(combined_file_name).run(overwrite_output=True)
|
448 |
+
# final_audio.update(value=combined_file_name, visible=True)
|
449 |
+
# yield (combined_file_name, history)
|
450 |
+
|
451 |
+
|
452 |
+
css = """
|
453 |
+
.bot .chatbot p {
|
454 |
+
overflow: hidden; /* Ensures the content is not revealed until the animation */
|
455 |
+
//border-right: .15em solid orange; /* The typwriter cursor */
|
456 |
+
white-space: nowrap; /* Keeps the content on a single line */
|
457 |
+
margin: 0 auto; /* Gives that scrolling effect as the typing happens */
|
458 |
+
letter-spacing: .15em; /* Adjust as needed */
|
459 |
+
animation:
|
460 |
+
typing 3.5s steps(40, end);
|
461 |
+
blink-caret .75s step-end infinite;
|
462 |
+
}
|
463 |
+
|
464 |
+
/* The typing effect */
|
465 |
+
@keyframes typing {
|
466 |
+
from { width: 0 }
|
467 |
+
to { width: 100% }
|
468 |
+
}
|
469 |
+
|
470 |
+
/* The typewriter cursor effect */
|
471 |
+
@keyframes blink-caret {
|
472 |
+
from, to { border-color: transparent }
|
473 |
+
50% { border-color: orange; }
|
474 |
+
}
|
475 |
+
"""
|
476 |
|
477 |
with gr.Blocks(title=title) as demo:
|
478 |
gr.Markdown(DESCRIPTION)
|
|
|
496 |
|
497 |
with gr.Row():
|
498 |
audio = gr.Audio(
|
499 |
+
label="Generated audio response",
|
500 |
streaming=False,
|
501 |
autoplay=False,
|
502 |
+
interactive=True,
|
503 |
show_label=True,
|
504 |
)
|
505 |
+
# TODO add a second audio that plays whole sentences (for mobile especially)
|
506 |
+
# final_audio = gr.Audio(label="Final audio response", streaming=False, autoplay=False, interactive=False,show_label=True, visible=False)
|
507 |
|
508 |
clear_btn = gr.ClearButton([chatbot, audio])
|
509 |
|
|
|
520 |
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
|
521 |
|
522 |
file_msg = btn.stop_recording(
|
523 |
+
add_file, [chatbot, btn], [chatbot, txt], queue=False
|
524 |
).then(generate_speech, chatbot, [audio, chatbot])
|
525 |
|
526 |
gr.Markdown(
|