Spaces:
Running
on
T4
Running
on
T4
File size: 19,188 Bytes
ca90f09 f81d4f2 0db6209 f05e79d 0db6209 5b0db06 f81d4f2 2f7d9da d02ad9c 0db6209 f89c55d 48423a0 f89c55d d02ad9c f81d4f2 194fffd f81d4f2 def995e f81d4f2 def995e f81d4f2 def995e 0db6209 285150b 194fffd f81d4f2 4584388 17283f5 4584388 f81d4f2 0db6209 def995e 48423a0 17283f5 3b69bc5 ee48acc 17283f5 f81d4f2 f89c55d f81d4f2 f89c55d 3b69bc5 f81d4f2 f89c55d 0db6209 f89c55d 4584388 63c2202 0db6209 f38c6b2 0db6209 f38c6b2 63c2202 f38c6b2 f89c55d 63c2202 3b69bc5 f81d4f2 63c2202 f89c55d f74bce2 3b69bc5 f74bce2 3b69bc5 f81d4f2 f74bce2 3b69bc5 0db6209 3b69bc5 f74bce2 3b69bc5 f81d4f2 f74bce2 2fb935b f38c6b2 2fb935b 3b69bc5 f81d4f2 2fb935b def995e f38c6b2 def995e f74bce2 f81d4f2 48423a0 6550ebd 48423a0 f81d4f2 23f5658 f74bce2 f81d4f2 d6aee2b def995e d6aee2b def995e d6aee2b def995e 48423a0 f7c2b84 48423a0 def995e 48423a0 def995e d6aee2b 4e13633 48423a0 939c1fe f81d4f2 3b69bc5 d636635 ee48acc f74bce2 3b69bc5 f81d4f2 f74bce2 194fffd fc50d18 194fffd e1c65f1 1db3815 12438dd 533ef97 e886026 533ef97 e886026 533ef97 e886026 533ef97 e1c65f1 f89c55d 08f0cf6 f89c55d 764a0de e1c65f1 3444a7f 8d2ef4c 3444a7f 0dfedcd d636635 869b784 d636635 f74bce2 f38c6b2 3b69bc5 939c1fe 3b69bc5 d636635 0dfedcd f74bce2 0dfedcd f74bce2 f38c6b2 3b69bc5 939c1fe 0dfedcd e886026 f38c6b2 3b69bc5 e886026 f38c6b2 3b69bc5 e886026 f38c6b2 3b69bc5 e886026 f38c6b2 3b69bc5 e886026 d636635 f74bce2 d636635 f74bce2 3b69bc5 f74bce2 f38c6b2 f74bce2 f38c6b2 3b69bc5 939c1fe d636635 e886026 3b69bc5 e886026 f38c6b2 e886026 3b69bc5 e886026 f38c6b2 e886026 3b69bc5 e886026 f38c6b2 e886026 3b69bc5 e886026 f38c6b2 e886026 17283f5 0dfedcd e886026 194fffd 142fdc7 33aef52 3c140e1 142fdc7 e886026 142fdc7 c6f8b29 17283f5 142fdc7 0dfedcd 142fdc7 262bc3f 142fdc7 939c1fe f74bce2 3b69bc5 0287131 3b69bc5 f38c6b2 c819034 939c1fe 58c1f3f 939c1fe 142fdc7 3b69bc5 194fffd 98d97a5 f81d4f2 3b69bc5 194fffd cff1c92 3444a7f 0f6c489 ccaf952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
import sys
import io, os, stat
import subprocess
import random
from zipfile import ZipFile
import uuid
import time
import torch
import torchaudio
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"
# langid is used to detect language for longer text
# Most users expect text to be their own language, there is checkbox to disable it
import langid
import base64
import csv
from io import StringIO
import datetime
import gradio as gr
from scipy.io.wavfile import write
from pydub import AudioSegment
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
HF_TOKEN = os.environ.get("HF_TOKEN")
from huggingface_hub import HfApi
# will use api to restart space on a unrecoverable error
api = HfApi(token=HF_TOKEN)
repo_id = "coqui/xtts"
# Use never ffmpeg binary for Ubuntu20 to use denoising for microphone input
print("Export newer ffmpeg binary for denoise filter")
ZipFile("ffmpeg.zip").extractall()
print("Make ffmpeg binary executable")
st = os.stat('ffmpeg')
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
# This will trigger downloading model
print("Downloading if not downloaded Coqui XTTS V1.1")
from TTS.utils.manage import ModelManager
model_name = "tts_models/multilingual/multi-dataset/xtts_v1.1"
ModelManager().download_model(model_name)
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
print("XTTS downloaded")
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))
# it should be there just to be sure
if "ja" not in config.languages:
config.languages.append("ja")
model = Xtts.init_from_config(config)
model.load_checkpoint(
config,
checkpoint_path=os.path.join(model_path, "model.pth"),
vocab_path=os.path.join(model_path, "vocab.json"),
eval=True,
use_deepspeed=True
)
model.cuda()
# This is for debugging purposes only
DEVICE_ASSERT_DETECTED=0
DEVICE_ASSERT_PROMPT=None
DEVICE_ASSERT_LANG=None
#supported_languages=["en","es","fr","de","it","pt","pl","tr","ru","nl","cs","ar","zh-cn"]
supported_languages=config.languages
def predict(prompt, language, audio_file_pth, mic_file_path, use_mic, voice_cleanup, no_lang_auto_detect, agree,):
if agree == True:
if language not in supported_languages:
gr.Warning(f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown")
return (
None,
None,
None,
None,
)
language_predicted=langid.classify(prompt)[0].strip() # strip need as there is space at end!
# tts expects chinese as zh-cn
if language_predicted == "zh":
#we use zh-cn
language_predicted = "zh-cn"
print(f"Detected language:{language_predicted}, Chosen language:{language}")
# After text character length 15 trigger language detection
if len(prompt)>15:
# allow any language for short text as some may be common
# If user unchecks language autodetection it will not trigger
# You may remove this completely for own use
if language_predicted != language and not no_lang_auto_detect:
#Please duplicate and remove this check if you really want this
#Or auto-detector fails to identify language (which it can on pretty short text or mixed text)
gr.Warning(f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox" )
return (
None,
None,
None,
None,
)
if use_mic == True:
if mic_file_path is not None:
speaker_wav=mic_file_path
else:
gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
return (
None,
None,
None,
None,
)
else:
speaker_wav=audio_file_pth
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
# This is fast filtering not perfect
# Apply all on demand
lowpassfilter=denoise=trim=loudness=True
if lowpassfilter:
lowpass_highpass="lowpass=8000,highpass=75,"
else:
lowpass_highpass=""
if trim:
# better to remove silence in beginning and end for microphone
trim_silence="areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
else:
trim_silence=""
if (voice_cleanup):
try:
out_filename = speaker_wav + str(uuid.uuid4()) + ".wav" #ffmpeg to know output format
#we will use newer ffmpeg as that has afftn denoise filter
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(" ")
command_result = subprocess.run([item for item in shell_command], capture_output=False,text=True, check=True)
speaker_wav=out_filename
print("Filtered microphone input")
except subprocess.CalledProcessError:
# There was an error - command exited with non-zero code
print("Error: failed filtering, use original microphone input")
else:
speaker_wav=speaker_wav
if len(prompt)<2:
gr.Warning("Please give a longer prompt text")
return (
None,
None,
None,
None,
)
if len(prompt)>200:
gr.Warning("Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage")
return (
None,
None,
None,
None,
)
global DEVICE_ASSERT_DETECTED
if DEVICE_ASSERT_DETECTED:
global DEVICE_ASSERT_PROMPT
global DEVICE_ASSERT_LANG
#It will likely never come here as we restart space on first unrecoverable error now
print(f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}")
try:
metrics_text=""
t_latent=time.time()
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
try:
gpt_cond_latent, diffusion_conditioning, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_wav)
except Exception as e:
print("Speaker encoding error", str(e))
gr.Warning("It appears something wrong with reference, did you unmute your microphone?")
return (
None,
None,
None,
None,
)
latent_calculation_time = time.time() - t_latent
#metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
wav_chunks = []
print("I: Generating new audio...")
t0 = time.time()
out = model.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
diffusion_conditioning,
decoder="ne_hifigan",
)
inference_time = time.time() - t0
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
metrics_text+=f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
real_time_factor= (time.time() - t0) / out['wav'].shape[-1] * 24000
print(f"Real-time factor (RTF): {real_time_factor}")
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
except RuntimeError as e :
if "device-side assert" in str(e):
# cannot do anything on cuda device side error, need tor estart
print(f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}", flush=True)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
if not DEVICE_ASSERT_DETECTED:
DEVICE_ASSERT_DETECTED=1
DEVICE_ASSERT_PROMPT=prompt
DEVICE_ASSERT_LANG=language
# just before restarting save what caused the issue so we can handle it in future
# Uploading Error data only happens for unrecovarable error
error_time = datetime.datetime.now().strftime('%d-%m-%Y-%H:%M:%S')
error_data = [error_time, prompt, language, audio_file_pth, mic_file_path, use_mic, voice_cleanup, no_lang_auto_detect, agree]
error_data = [str(e) if type(e)!=str else e for e in error_data]
print(error_data)
print(speaker_wav)
write_io = StringIO()
csv.writer(write_io).writerows([error_data])
csv_upload= write_io.getvalue().encode()
filename = error_time+"_" + str(uuid.uuid4()) +".csv"
print("Writing error csv")
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=csv_upload,
path_in_repo=filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
#speaker_wav
print("Writing error reference audio")
speaker_filename = error_time+"_reference_"+ str(uuid.uuid4()) +".wav"
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=speaker_wav,
path_in_repo=speaker_filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
# HF Space specific.. This error is unrecoverable need to restart space
api.restart_space(repo_id=repo_id)
else:
if "Failed to decode" in str(e):
print("Speaker encoding error", str(e))
gr.Warning("It appears something wrong with reference, did you unmute your microphone?")
else:
print("RuntimeError: non device-side assert error:", str(e))
gr.Warning("Something unexpected happened please retry again.")
return (
None,
None,
None,
None,
)
return (
gr.make_waveform(
audio="output.wav",
),
"output.wav",
metrics_text,
speaker_wav,
)
else:
gr.Warning("Please accept the Terms & Condition!")
return (
None,
None,
None,
None,
)
title = "Coqui🐸 XTTS"
description = """
<div>
<a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>
<a style='display:inline-block' href='https://discord.gg/5eXr5seRrv'><img src='https://discord.com/api/guilds/1037326658807533628/widget.png?style=shield' /></a>
<a href="https://huggingface.co/spaces/coqui/xtts?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</div>
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 6-second audio clip.
<br/>
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible.
<br/>
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible.
<br/>
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">🐸TTS</a>, where our open-source inference and training code lives.
<br/>
<p>For faster inference without waiting in the queue, you should duplicate this space and upgrade to GPU via the settings.
<br/>
</p>
<p>Language Selectors:
Arabic: ar, Brazilian Portuguese: pt , Chinese: zh-cn, Czech: cs,<br/>
Dutch: nl, English: en, French: fr, Italian: it, Polish: pl,<br/>
Russian: ru, Spanish: es, Turkish: tr, Japanese: ja <br/>
</p>
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0d00920c-8cc9-4bf3-90f2-a615797e5f59" />
"""
article = """
<div style='margin:20px auto;'>
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
<p>We collect data only for error cases for improvement.</p>
</div>
"""
examples = [
[
"Once when I was six years old I saw a magnificent picture",
"en",
"examples/female.wav",
None,
False,
False,
False,
True,
],
[
"Lorsque j'avais six ans j'ai vu, une fois, une magnifique image",
"fr",
"examples/male.wav",
None,
False,
False,
False,
True,
],
[
"Als ich sechs war, sah ich einmal ein wunderbares Bild",
"de",
"examples/female.wav",
None,
False,
False,
False,
True,
],
[
"Cuando tenía seis años, vi una vez una imagen magnífica",
"es",
"examples/male.wav",
None,
False,
False,
False,
True,
],
[
"Quando eu tinha seis anos eu vi, uma vez, uma imagem magnífica",
"pt",
"examples/female.wav",
None,
False,
False,
False,
True,
],
[
"Kiedy miałem sześć lat, zobaczyłem pewnego razu wspaniały obrazek",
"pl",
"examples/male.wav",
None,
False,
False,
False,
True,
],
[
"Un tempo lontano, quando avevo sei anni, vidi un magnifico disegno",
"it",
"examples/female.wav",
None,
False,
False,
False,
True,
],
[
"Bir zamanlar, altı yaşındayken, muhteşem bir resim gördüm",
"tr",
"examples/female.wav",
None,
False,
False,
False,
True,
],
[
"Когда мне было шесть лет, я увидел однажды удивительную картинку",
"ru",
"examples/female.wav",
None,
False,
False,
False,
True,
],
[
"Toen ik een jaar of zes was, zag ik op een keer een prachtige plaat",
"nl",
"examples/male.wav",
None,
False,
False,
False,
True,
],
[
"Když mi bylo šest let, viděl jsem jednou nádherný obrázek",
"cs",
"examples/female.wav",
None,
False,
False,
False,
True,
],
[
"当我还只有六岁的时候, 看到了一副精彩的插画",
"zh-cn",
"examples/female.wav",
None,
False,
False,
False,
True,
],
[
"かつて 六歳のとき、素晴らしい絵を見ました",
"ja",
"examples/female.wav",
None,
False,
True,
False,
True,
],
]
gr.Interface(
fn=predict,
inputs=[
gr.Textbox(
label="Text Prompt",
info="One or two sentences at a time is better. Up to 200 text characters.",
value="Hi there, I'm your new voice clone. Try your best to upload quality audio",
),
gr.Dropdown(
label="Language",
info="Select an output language for the synthesised speech",
choices=[
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh-cn",
"ja"
],
max_choices=1,
value="en",
),
gr.Audio(
label="Reference Audio",
info="Click on the ✎ button to upload your own target speaker audio",
type="filepath",
value="examples/female.wav",
),
gr.Audio(source="microphone",
type="filepath",
info="Use your microphone to record audio",
label="Use Microphone for Reference"),
gr.Checkbox(label="Use Microphone",
value=False,
info="Notice: Microphone input may not work properly under traffic",),
gr.Checkbox(label="Cleanup Reference Voice",
value=False,
info="This check can improve output if your microphone or reference voice is noisy",
),
gr.Checkbox(label="Do not use language auto-detect",
value=False,
info="Check to disable language auto-detection",),
gr.Checkbox(
label="Agree",
value=False,
info="I agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml",
),
],
outputs=[
gr.Video(label="Waveform Visual"),
gr.Audio(label="Synthesised Audio",autoplay=True),
gr.Text(label="Metrics"),
gr.Audio(label="Reference Audio Used"),
],
title=title,
description=description,
article=article,
examples=examples,
).queue().launch(debug=True,show_api=True) |