File size: 14,853 Bytes
87b62f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import gradio as gr
import cv2
from annotator.util import resize_image, HWC3
DESCRIPTION = '# ControlNet v1.1 Annotators (that runs on cpu only)'
DESCRIPTION += '\n<p>This app generates Control Image for Mochi Diffusion's ControlNet.</p>'
DESCRIPTION += '\n<p>HEIC image is not converted. Please use PNG or JPG image.'
DESCRIPTION += '\n HEICの画像は変換できません。 PNGまたはJPGの画像を使ってください。</p>'
model_canny = None
def canny(img, res, l, h):
img = resize_image(HWC3(img), res)
global model_canny
if model_canny is None:
from annotator.canny import CannyDetector
model_canny = CannyDetector()
result = model_canny(img, l, h)
return [result]
model_hed = None
def hed(img, res):
img = resize_image(HWC3(img), res)
global model_hed
if model_hed is None:
from annotator.hed import HEDdetector
model_hed = HEDdetector()
result = model_hed(img)
return [result]
model_pidi = None
def pidi(img, res):
img = resize_image(HWC3(img), res)
global model_pidi
if model_pidi is None:
from annotator.pidinet import PidiNetDetector
model_pidi = PidiNetDetector()
result = model_pidi(img)
return [result]
model_mlsd = None
def mlsd(img, res, thr_v, thr_d):
img = resize_image(HWC3(img), res)
global model_mlsd
if model_mlsd is None:
from annotator.mlsd import MLSDdetector
model_mlsd = MLSDdetector()
result = model_mlsd(img, thr_v, thr_d)
return [result]
model_midas = None
def midas(img, res):
img = resize_image(HWC3(img), res)
global model_midas
if model_midas is None:
from annotator.midas import MidasDetector
model_midas = MidasDetector()
result = model_midas(img)
return [result]
model_zoe = None
def zoe(img, res):
img = resize_image(HWC3(img), res)
global model_zoe
if model_zoe is None:
from annotator.zoe import ZoeDetector
model_zoe = ZoeDetector()
result = model_zoe(img)
return [result]
model_normalbae = None
def normalbae(img, res):
img = resize_image(HWC3(img), res)
global model_normalbae
if model_normalbae is None:
from annotator.normalbae import NormalBaeDetector
model_normalbae = NormalBaeDetector()
result = model_normalbae(img)
return [result]
model_openpose = None
def openpose(img, res, hand_and_face):
img = resize_image(HWC3(img), res)
global model_openpose
if model_openpose is None:
from annotator.openpose import OpenposeDetector
model_openpose = OpenposeDetector()
result = model_openpose(img, hand_and_face)
return [result]
model_uniformer = None
#def uniformer(img, res):
# img = resize_image(HWC3(img), res)
# global model_uniformer
# if model_uniformer is None:
# from annotator.uniformer import UniformerDetector
# model_uniformer = UniformerDetector()
# result = model_uniformer(img)
# return [result]
model_lineart_anime = None
def lineart_anime(img, res, invert=True):
img = resize_image(HWC3(img), res)
global model_lineart_anime
if model_lineart_anime is None:
from annotator.lineart_anime import LineartAnimeDetector
model_lineart_anime = LineartAnimeDetector()
# result = model_lineart_anime(img)
if (invert):
result = cv2.bitwise_not(model_lineart_anime(img))
else:
result = model_lineart_anime(img)
return [result]
model_lineart = None
def lineart(img, res, coarse=False, invert=True):
img = resize_image(HWC3(img), res)
global model_lineart
if model_lineart is None:
from annotator.lineart import LineartDetector
model_lineart = LineartDetector()
# result = model_lineart(img, coarse)
if (invert):
result = cv2.bitwise_not(model_lineart(img, coarse))
else:
result = model_lineart(img, coarse)
return [result]
model_oneformer_coco = None
def oneformer_coco(img, res):
img = resize_image(HWC3(img), res)
global model_oneformer_coco
if model_oneformer_coco is None:
from annotator.oneformer import OneformerCOCODetector
model_oneformer_coco = OneformerCOCODetector()
result = model_oneformer_coco(img)
return [result]
model_oneformer_ade20k = None
def oneformer_ade20k(img, res):
img = resize_image(HWC3(img), res)
global model_oneformer_ade20k
if model_oneformer_ade20k is None:
from annotator.oneformer import OneformerADE20kDetector
model_oneformer_ade20k = OneformerADE20kDetector()
result = model_oneformer_ade20k(img)
return [result]
model_content_shuffler = None
def content_shuffler(img, res):
img = resize_image(HWC3(img), res)
global model_content_shuffler
if model_content_shuffler is None:
from annotator.shuffle import ContentShuffleDetector
model_content_shuffler = ContentShuffleDetector()
result = model_content_shuffler(img)
return [result]
model_color_shuffler = None
def color_shuffler(img, res):
img = resize_image(HWC3(img), res)
global model_color_shuffler
if model_color_shuffler is None:
from annotator.shuffle import ColorShuffleDetector
model_color_shuffler = ColorShuffleDetector()
result = model_color_shuffler(img)
return [result]
block = gr.Blocks().queue()
with block:
gr.Markdown(DESCRIPTION)
with gr.Row():
gr.Markdown("## Canny Edge")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=canny, inputs=[input_image, resolution, low_threshold, high_threshold], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## HED Edge "SoftEdge"")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=hed, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Pidi Edge "SoftEdge"")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=pidi, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## MLSD Edge")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=mlsd, inputs=[input_image, resolution, value_threshold, distance_threshold], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## MIDAS Depth")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=midas, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Zoe Depth")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=zoe, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Normal Bae")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=normalbae, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Openpose")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
hand_and_face = gr.Checkbox(label='Hand and Face', value=False)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=openpose, inputs=[input_image, resolution, hand_and_face], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Lineart Anime \n<p>Check Invert to use with Mochi Diffusion.")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
invert = gr.Checkbox(label='Invert', value=True)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=lineart_anime, inputs=[input_image, resolution, invert], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Lineart \n<p>Check Invert to use with Mochi Diffusion. Inverted image can also be created here for use with ControlNet Scribble.")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
coarse = gr.Checkbox(label='Using coarse model', value=False)
invert = gr.Checkbox(label='Invert', value=True)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=lineart, inputs=[input_image, resolution, coarse, invert], outputs=[gallery])
# with gr.Row():
# gr.Markdown("## Uniformer Segmentation")
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(source='upload', type="numpy")
# resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
# run_button = gr.Button(label="Run")
# with gr.Column():
# gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
# run_button.click(fn=uniformer, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Oneformer COCO Segmentation")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=oneformer_coco, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Oneformer ADE20K Segmentation")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=640, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=oneformer_ade20k, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Content Shuffle")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=content_shuffler, inputs=[input_image, resolution], outputs=[gallery])
gr.Markdown("<hr>")
with gr.Row():
gr.Markdown("## Color Shuffle")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=color_shuffler, inputs=[input_image, resolution], outputs=[gallery])
block.launch(server_name='0.0.0.0')
|