|
import logging |
|
import numpy as np |
|
from torchvision.transforms import ToTensor, ToPILImage |
|
import torch |
|
import torch.nn.functional as F |
|
import cv2 |
|
|
|
from . import util |
|
from torch.nn import Conv2d, Module, ReLU, MaxPool2d, init |
|
|
|
|
|
class FaceNet(Module): |
|
"""Model the cascading heatmaps. """ |
|
def __init__(self): |
|
super(FaceNet, self).__init__() |
|
|
|
self.relu = ReLU() |
|
self.max_pooling_2d = MaxPool2d(kernel_size=2, stride=2) |
|
self.conv1_1 = Conv2d(in_channels=3, out_channels=64, |
|
kernel_size=3, stride=1, padding=1) |
|
self.conv1_2 = Conv2d( |
|
in_channels=64, out_channels=64, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv2_1 = Conv2d( |
|
in_channels=64, out_channels=128, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv2_2 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv3_1 = Conv2d( |
|
in_channels=128, out_channels=256, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv3_2 = Conv2d( |
|
in_channels=256, out_channels=256, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv3_3 = Conv2d( |
|
in_channels=256, out_channels=256, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv3_4 = Conv2d( |
|
in_channels=256, out_channels=256, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv4_1 = Conv2d( |
|
in_channels=256, out_channels=512, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv4_2 = Conv2d( |
|
in_channels=512, out_channels=512, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv4_3 = Conv2d( |
|
in_channels=512, out_channels=512, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv4_4 = Conv2d( |
|
in_channels=512, out_channels=512, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv5_1 = Conv2d( |
|
in_channels=512, out_channels=512, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv5_2 = Conv2d( |
|
in_channels=512, out_channels=512, kernel_size=3, stride=1, |
|
padding=1) |
|
self.conv5_3_CPM = Conv2d( |
|
in_channels=512, out_channels=128, kernel_size=3, stride=1, |
|
padding=1) |
|
|
|
|
|
self.conv6_1_CPM = Conv2d( |
|
in_channels=128, out_channels=512, kernel_size=1, stride=1, |
|
padding=0) |
|
self.conv6_2_CPM = Conv2d( |
|
in_channels=512, out_channels=71, kernel_size=1, stride=1, |
|
padding=0) |
|
|
|
|
|
self.Mconv1_stage2 = Conv2d( |
|
in_channels=199, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv2_stage2 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv3_stage2 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv4_stage2 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv5_stage2 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv6_stage2 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=1, stride=1, |
|
padding=0) |
|
self.Mconv7_stage2 = Conv2d( |
|
in_channels=128, out_channels=71, kernel_size=1, stride=1, |
|
padding=0) |
|
|
|
|
|
self.Mconv1_stage3 = Conv2d( |
|
in_channels=199, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv2_stage3 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv3_stage3 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv4_stage3 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv5_stage3 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv6_stage3 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=1, stride=1, |
|
padding=0) |
|
self.Mconv7_stage3 = Conv2d( |
|
in_channels=128, out_channels=71, kernel_size=1, stride=1, |
|
padding=0) |
|
|
|
|
|
self.Mconv1_stage4 = Conv2d( |
|
in_channels=199, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv2_stage4 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv3_stage4 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv4_stage4 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv5_stage4 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv6_stage4 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=1, stride=1, |
|
padding=0) |
|
self.Mconv7_stage4 = Conv2d( |
|
in_channels=128, out_channels=71, kernel_size=1, stride=1, |
|
padding=0) |
|
|
|
|
|
self.Mconv1_stage5 = Conv2d( |
|
in_channels=199, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv2_stage5 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv3_stage5 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv4_stage5 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv5_stage5 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv6_stage5 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=1, stride=1, |
|
padding=0) |
|
self.Mconv7_stage5 = Conv2d( |
|
in_channels=128, out_channels=71, kernel_size=1, stride=1, |
|
padding=0) |
|
|
|
|
|
self.Mconv1_stage6 = Conv2d( |
|
in_channels=199, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv2_stage6 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv3_stage6 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv4_stage6 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv5_stage6 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=7, stride=1, |
|
padding=3) |
|
self.Mconv6_stage6 = Conv2d( |
|
in_channels=128, out_channels=128, kernel_size=1, stride=1, |
|
padding=0) |
|
self.Mconv7_stage6 = Conv2d( |
|
in_channels=128, out_channels=71, kernel_size=1, stride=1, |
|
padding=0) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, Conv2d): |
|
init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
"""Return a list of heatmaps.""" |
|
heatmaps = [] |
|
|
|
h = self.relu(self.conv1_1(x)) |
|
h = self.relu(self.conv1_2(h)) |
|
h = self.max_pooling_2d(h) |
|
h = self.relu(self.conv2_1(h)) |
|
h = self.relu(self.conv2_2(h)) |
|
h = self.max_pooling_2d(h) |
|
h = self.relu(self.conv3_1(h)) |
|
h = self.relu(self.conv3_2(h)) |
|
h = self.relu(self.conv3_3(h)) |
|
h = self.relu(self.conv3_4(h)) |
|
h = self.max_pooling_2d(h) |
|
h = self.relu(self.conv4_1(h)) |
|
h = self.relu(self.conv4_2(h)) |
|
h = self.relu(self.conv4_3(h)) |
|
h = self.relu(self.conv4_4(h)) |
|
h = self.relu(self.conv5_1(h)) |
|
h = self.relu(self.conv5_2(h)) |
|
h = self.relu(self.conv5_3_CPM(h)) |
|
feature_map = h |
|
|
|
|
|
h = self.relu(self.conv6_1_CPM(h)) |
|
h = self.conv6_2_CPM(h) |
|
heatmaps.append(h) |
|
|
|
|
|
h = torch.cat([h, feature_map], dim=1) |
|
h = self.relu(self.Mconv1_stage2(h)) |
|
h = self.relu(self.Mconv2_stage2(h)) |
|
h = self.relu(self.Mconv3_stage2(h)) |
|
h = self.relu(self.Mconv4_stage2(h)) |
|
h = self.relu(self.Mconv5_stage2(h)) |
|
h = self.relu(self.Mconv6_stage2(h)) |
|
h = self.Mconv7_stage2(h) |
|
heatmaps.append(h) |
|
|
|
|
|
h = torch.cat([h, feature_map], dim=1) |
|
h = self.relu(self.Mconv1_stage3(h)) |
|
h = self.relu(self.Mconv2_stage3(h)) |
|
h = self.relu(self.Mconv3_stage3(h)) |
|
h = self.relu(self.Mconv4_stage3(h)) |
|
h = self.relu(self.Mconv5_stage3(h)) |
|
h = self.relu(self.Mconv6_stage3(h)) |
|
h = self.Mconv7_stage3(h) |
|
heatmaps.append(h) |
|
|
|
|
|
h = torch.cat([h, feature_map], dim=1) |
|
h = self.relu(self.Mconv1_stage4(h)) |
|
h = self.relu(self.Mconv2_stage4(h)) |
|
h = self.relu(self.Mconv3_stage4(h)) |
|
h = self.relu(self.Mconv4_stage4(h)) |
|
h = self.relu(self.Mconv5_stage4(h)) |
|
h = self.relu(self.Mconv6_stage4(h)) |
|
h = self.Mconv7_stage4(h) |
|
heatmaps.append(h) |
|
|
|
|
|
h = torch.cat([h, feature_map], dim=1) |
|
h = self.relu(self.Mconv1_stage5(h)) |
|
h = self.relu(self.Mconv2_stage5(h)) |
|
h = self.relu(self.Mconv3_stage5(h)) |
|
h = self.relu(self.Mconv4_stage5(h)) |
|
h = self.relu(self.Mconv5_stage5(h)) |
|
h = self.relu(self.Mconv6_stage5(h)) |
|
h = self.Mconv7_stage5(h) |
|
heatmaps.append(h) |
|
|
|
|
|
h = torch.cat([h, feature_map], dim=1) |
|
h = self.relu(self.Mconv1_stage6(h)) |
|
h = self.relu(self.Mconv2_stage6(h)) |
|
h = self.relu(self.Mconv3_stage6(h)) |
|
h = self.relu(self.Mconv4_stage6(h)) |
|
h = self.relu(self.Mconv5_stage6(h)) |
|
h = self.relu(self.Mconv6_stage6(h)) |
|
h = self.Mconv7_stage6(h) |
|
heatmaps.append(h) |
|
|
|
return heatmaps |
|
|
|
|
|
LOG = logging.getLogger(__name__) |
|
TOTEN = ToTensor() |
|
TOPIL = ToPILImage() |
|
|
|
|
|
params = { |
|
'gaussian_sigma': 2.5, |
|
'inference_img_size': 736, |
|
'heatmap_peak_thresh': 0.1, |
|
'crop_scale': 1.5, |
|
'line_indices': [ |
|
[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], |
|
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11], [11, 12], [12, 13], |
|
[13, 14], [14, 15], [15, 16], |
|
[17, 18], [18, 19], [19, 20], [20, 21], |
|
[22, 23], [23, 24], [24, 25], [25, 26], |
|
[27, 28], [28, 29], [29, 30], |
|
[31, 32], [32, 33], [33, 34], [34, 35], |
|
[36, 37], [37, 38], [38, 39], [39, 40], [40, 41], [41, 36], |
|
[42, 43], [43, 44], [44, 45], [45, 46], [46, 47], [47, 42], |
|
[48, 49], [49, 50], [50, 51], [51, 52], [52, 53], [53, 54], |
|
[54, 55], [55, 56], [56, 57], [57, 58], [58, 59], [59, 48], |
|
[60, 61], [61, 62], [62, 63], [63, 64], [64, 65], [65, 66], |
|
[66, 67], [67, 60] |
|
], |
|
} |
|
|
|
|
|
class Face(object): |
|
""" |
|
The OpenPose face landmark detector model. |
|
|
|
Args: |
|
inference_size: set the size of the inference image size, suggested: |
|
368, 736, 1312, default 736 |
|
gaussian_sigma: blur the heatmaps, default 2.5 |
|
heatmap_peak_thresh: return landmark if over threshold, default 0.1 |
|
|
|
""" |
|
def __init__(self, face_model_path, |
|
inference_size=None, |
|
gaussian_sigma=None, |
|
heatmap_peak_thresh=None): |
|
self.inference_size = inference_size or params["inference_img_size"] |
|
self.sigma = gaussian_sigma or params['gaussian_sigma'] |
|
self.threshold = heatmap_peak_thresh or params["heatmap_peak_thresh"] |
|
self.model = FaceNet() |
|
self.model.load_state_dict(torch.load(face_model_path)) |
|
if torch.cuda.is_available(): |
|
self.model = self.model.cuda() |
|
print('cuda') |
|
self.model.eval() |
|
|
|
def __call__(self, face_img): |
|
H, W, C = face_img.shape |
|
|
|
w_size = 384 |
|
x_data = torch.from_numpy(util.smart_resize(face_img, (w_size, w_size))).permute([2, 0, 1]) / 256.0 - 0.5 |
|
|
|
if torch.cuda.is_available(): |
|
x_data = x_data.cuda() |
|
|
|
with torch.no_grad(): |
|
hs = self.model(x_data[None, ...]) |
|
heatmaps = F.interpolate( |
|
hs[-1], |
|
(H, W), |
|
mode='bilinear', align_corners=True).cpu().numpy()[0] |
|
return heatmaps |
|
|
|
def compute_peaks_from_heatmaps(self, heatmaps): |
|
all_peaks = [] |
|
for part in range(heatmaps.shape[0]): |
|
map_ori = heatmaps[part].copy() |
|
binary = np.ascontiguousarray(map_ori > 0.05, dtype=np.uint8) |
|
|
|
if np.sum(binary) == 0: |
|
continue |
|
|
|
positions = np.where(binary > 0.5) |
|
intensities = map_ori[positions] |
|
mi = np.argmax(intensities) |
|
y, x = positions[0][mi], positions[1][mi] |
|
all_peaks.append([x, y]) |
|
|
|
return np.array(all_peaks) |
|
|