Replace with Docker frontend
Browse files- Dockerfile +30 -0
- app.py +0 -469
- requirements.txt +0 -5
- startup.sh +13 -0
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9.16
|
2 |
+
ENV DEBIAN_FRONTEND=noninteractive \
|
3 |
+
TZ=Europe/Paris
|
4 |
+
|
5 |
+
# BEGIN root part
|
6 |
+
|
7 |
+
# Setup tailscale
|
8 |
+
WORKDIR /bin
|
9 |
+
ENV TSFILE=tailscale_1.38.2_amd64.tgz
|
10 |
+
RUN wget https://pkgs.tailscale.com/stable/${TSFILE} && \
|
11 |
+
tar xzf ${TSFILE} --strip-components=1
|
12 |
+
RUN mkdir -p /var/run && ln -s /tmp/tailscale /var/run/tailscale && \
|
13 |
+
mkdir -p /var/cache && ln -s /tmp/tailscale /var/cache/tailscale && \
|
14 |
+
mkdir -p /var/lib && ln -s /tmp/tailscale /var/lib/tailscale && \
|
15 |
+
mkdir -p /var/task && ln -s /tmp/tailscale /var/task/tailscale
|
16 |
+
|
17 |
+
# Install socat
|
18 |
+
RUN apt-get update && apt-get -y install socat
|
19 |
+
|
20 |
+
# User
|
21 |
+
RUN useradd -m -u 1000 user
|
22 |
+
USER user
|
23 |
+
ENV HOME=/home/user \
|
24 |
+
PATH=/home/user/.local/bin:$PATH
|
25 |
+
WORKDIR /home/user/app
|
26 |
+
|
27 |
+
COPY --link --chown=1000 ./ $HOME/app
|
28 |
+
|
29 |
+
ENTRYPOINT $HOME/app/startup.sh
|
30 |
+
|
app.py
DELETED
@@ -1,469 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import json
|
3 |
-
import shutil
|
4 |
-
import subprocess
|
5 |
-
import urllib.parse
|
6 |
-
from pathlib import Path
|
7 |
-
|
8 |
-
from huggingface_hub import hf_hub_download, HfApi, scan_cache_dir
|
9 |
-
from coremltools import ComputeUnit
|
10 |
-
from coremltools.models.utils import _is_macos, _macos_version
|
11 |
-
|
12 |
-
from transformers.onnx.utils import get_preprocessor
|
13 |
-
|
14 |
-
from exporters.coreml import export
|
15 |
-
from exporters.coreml.features import FeaturesManager
|
16 |
-
from exporters.coreml.validate import validate_model_outputs
|
17 |
-
|
18 |
-
compute_units_mapping = {
|
19 |
-
"All": ComputeUnit.ALL,
|
20 |
-
"CPU": ComputeUnit.CPU_ONLY,
|
21 |
-
"CPU + GPU": ComputeUnit.CPU_AND_GPU,
|
22 |
-
"CPU + NE": ComputeUnit.CPU_AND_NE,
|
23 |
-
}
|
24 |
-
compute_units_labels = list(compute_units_mapping.keys())
|
25 |
-
|
26 |
-
framework_mapping = {
|
27 |
-
"PyTorch": "pt",
|
28 |
-
"TensorFlow": "tf",
|
29 |
-
}
|
30 |
-
framework_labels = list(framework_mapping.keys())
|
31 |
-
|
32 |
-
precision_mapping = {
|
33 |
-
"Float32": "float32",
|
34 |
-
"Float16 quantization": "float16",
|
35 |
-
}
|
36 |
-
precision_labels = list(precision_mapping.keys())
|
37 |
-
|
38 |
-
tolerance_mapping = {
|
39 |
-
"Model default": None,
|
40 |
-
"1e-2": 1e-2,
|
41 |
-
"1e-3": 1e-3,
|
42 |
-
"1e-4": 1e-4,
|
43 |
-
}
|
44 |
-
tolerance_labels = list(tolerance_mapping.keys())
|
45 |
-
|
46 |
-
push_mapping = {
|
47 |
-
"Submit a PR to the original repo": "pr",
|
48 |
-
"Create a new repo": "new",
|
49 |
-
}
|
50 |
-
push_labels = list(push_mapping.keys())
|
51 |
-
|
52 |
-
tasks_mapping = {
|
53 |
-
"default": "Feature Extraction",
|
54 |
-
"causal-lm": "Text Generation",
|
55 |
-
"ctc": "CTC (Connectionist Temporal Classification)",
|
56 |
-
"image-classification": "Image Classification",
|
57 |
-
"image-segmentation": "Image Segmentation",
|
58 |
-
"masked-im": "Image Fill-Mask",
|
59 |
-
"masked-lm": "Fill-Mask",
|
60 |
-
"multiple-choice": "Multiple Choice",
|
61 |
-
"next-sentence-prediction": "Next Sentence Prediction",
|
62 |
-
"object-detection": "Object Detection",
|
63 |
-
"question-answering": "Question Answering",
|
64 |
-
"semantic-segmentation": "Semantic Segmentation",
|
65 |
-
"seq2seq-lm": "Text to Text Generation",
|
66 |
-
"sequence-classification": "Text Classification",
|
67 |
-
"speech-seq2seq": "Audio to Audio",
|
68 |
-
"token-classification": "Token Classification",
|
69 |
-
}
|
70 |
-
reverse_tasks_mapping = {v: k for k, v in tasks_mapping.items()}
|
71 |
-
tasks_labels = list(tasks_mapping.keys())
|
72 |
-
|
73 |
-
# Map pipeline_tag to internal exporters features/tasks
|
74 |
-
tags_to_tasks_mapping = {
|
75 |
-
"feature-extraction": "default",
|
76 |
-
"text-generation": "causal-lm",
|
77 |
-
"image-classification": "image-classification",
|
78 |
-
"image-segmentation": "image-segmentation",
|
79 |
-
"fill-mask": "masked-lm",
|
80 |
-
"object-detection": "object-detection",
|
81 |
-
"question-answering": "question-answering",
|
82 |
-
"text2text-generation": "seq2seq-lm",
|
83 |
-
"text-classification": "sequence-classification",
|
84 |
-
"token-classification": "token-classification",
|
85 |
-
}
|
86 |
-
|
87 |
-
def error_str(error, title="Error", model=None, task=None, framework=None, compute_units=None, precision=None, tolerance=None, destination=None, open_discussion=True):
|
88 |
-
if not error: return ""
|
89 |
-
|
90 |
-
discussion_text = ""
|
91 |
-
if open_discussion:
|
92 |
-
issue_title = urllib.parse.quote(f"Error converting {model}")
|
93 |
-
issue_description = urllib.parse.quote(f"""Conversion Settings:
|
94 |
-
|
95 |
-
Model: {model}
|
96 |
-
Task: {task}
|
97 |
-
Framework: {framework}
|
98 |
-
Compute Units: {compute_units}
|
99 |
-
Precision: {precision}
|
100 |
-
Tolerance: {tolerance}
|
101 |
-
Push to: {destination}
|
102 |
-
|
103 |
-
Error: {error}
|
104 |
-
""")
|
105 |
-
issue_url = f"https://huggingface.co/spaces/pcuenq/transformers-to-coreml/discussions/new?title={issue_title}&description={issue_description}"
|
106 |
-
discussion_text = f"You can open a discussion on the [Hugging Face Hub]({issue_url}) to report this issue."
|
107 |
-
return f"""
|
108 |
-
#### {title}
|
109 |
-
{error}
|
110 |
-
|
111 |
-
{discussion_text}
|
112 |
-
"""
|
113 |
-
|
114 |
-
def url_to_model_id(model_id_str):
|
115 |
-
if not model_id_str.startswith("https://huggingface.co/"): return model_id_str
|
116 |
-
return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1]
|
117 |
-
|
118 |
-
def get_pr_url(api, repo_id, title):
|
119 |
-
try:
|
120 |
-
discussions = api.get_repo_discussions(repo_id=repo_id)
|
121 |
-
except Exception:
|
122 |
-
return None
|
123 |
-
for discussion in discussions:
|
124 |
-
if (
|
125 |
-
discussion.status == "open"
|
126 |
-
and discussion.is_pull_request
|
127 |
-
and discussion.title == title
|
128 |
-
):
|
129 |
-
return f"https://huggingface.co/{repo_id}/discussions/{discussion.num}"
|
130 |
-
|
131 |
-
def retrieve_model_info(model_id):
|
132 |
-
api = HfApi()
|
133 |
-
model_info = api.model_info(model_id)
|
134 |
-
tags = model_info.tags
|
135 |
-
frameworks = [tag for tag in tags if tag in ["pytorch", "tf"]]
|
136 |
-
return {
|
137 |
-
"pipeline_tag": model_info.pipeline_tag,
|
138 |
-
"frameworks": sorted(["PyTorch" if f == "pytorch" else "TensorFlow" for f in frameworks]),
|
139 |
-
}
|
140 |
-
|
141 |
-
def supported_frameworks(model_info):
|
142 |
-
"""
|
143 |
-
Return a list of supported frameworks (`PyTorch` or `TensorFlow`) for a given model_id.
|
144 |
-
Only PyTorch and Tensorflow are supported.
|
145 |
-
"""
|
146 |
-
api = HfApi()
|
147 |
-
model_info = api.model_info(model_id)
|
148 |
-
tags = model_info.tags
|
149 |
-
frameworks = [tag for tag in tags if tag in ["pytorch", "tf"]]
|
150 |
-
return sorted(["PyTorch" if f == "pytorch" else "TensorFlow" for f in frameworks])
|
151 |
-
|
152 |
-
def on_model_change(model):
|
153 |
-
model = url_to_model_id(model)
|
154 |
-
tasks = None
|
155 |
-
error = None
|
156 |
-
frameworks = []
|
157 |
-
selected_framework = None
|
158 |
-
selected_task = None
|
159 |
-
|
160 |
-
try:
|
161 |
-
config_file = hf_hub_download(model, filename="config.json")
|
162 |
-
if config_file is None:
|
163 |
-
raise Exception(f"Model {model} not found")
|
164 |
-
|
165 |
-
with open(config_file, "r") as f:
|
166 |
-
config_json = f.read()
|
167 |
-
|
168 |
-
config = json.loads(config_json)
|
169 |
-
model_type = config["model_type"]
|
170 |
-
|
171 |
-
# Ignore `-with-past` for now
|
172 |
-
features = FeaturesManager.get_supported_features_for_model_type(model_type)
|
173 |
-
tasks = list(features.keys())
|
174 |
-
tasks = [task for task in tasks if "-with-past" not in task]
|
175 |
-
|
176 |
-
model_info = retrieve_model_info(model)
|
177 |
-
frameworks = model_info["frameworks"]
|
178 |
-
selected_framework = frameworks[0] if len(frameworks) > 0 else None
|
179 |
-
|
180 |
-
pipeline_tag = model_info["pipeline_tag"]
|
181 |
-
# print(pipeline_tag)
|
182 |
-
# Select the task corresponding to the pipeline tag
|
183 |
-
if tasks:
|
184 |
-
if pipeline_tag in tags_to_tasks_mapping:
|
185 |
-
selected_task = tags_to_tasks_mapping[pipeline_tag]
|
186 |
-
else:
|
187 |
-
selected_task = tasks[0]
|
188 |
-
|
189 |
-
# Convert to UI labels
|
190 |
-
tasks = [tasks_mapping[task] for task in tasks]
|
191 |
-
selected_task = tasks_mapping[selected_task]
|
192 |
-
|
193 |
-
except Exception as e:
|
194 |
-
error = e
|
195 |
-
model_type = None
|
196 |
-
|
197 |
-
return (
|
198 |
-
gr.update(visible=bool(model_type)), # Settings column
|
199 |
-
gr.update(choices=tasks, value=selected_task), # Tasks
|
200 |
-
gr.update(visible=len(frameworks)>1, choices=frameworks, value=selected_framework), # Frameworks
|
201 |
-
gr.update(value=error_str(error, model=model)), # Error
|
202 |
-
)
|
203 |
-
|
204 |
-
|
205 |
-
def convert_model(preprocessor, model, model_coreml_config,
|
206 |
-
compute_units, precision, tolerance, output,
|
207 |
-
use_past=False, seq2seq=None,
|
208 |
-
progress=None, progress_start=0.1, progress_end=0.8):
|
209 |
-
coreml_config = model_coreml_config(model.config, use_past=use_past, seq2seq=seq2seq)
|
210 |
-
|
211 |
-
model_label = "model" if seq2seq is None else seq2seq
|
212 |
-
progress(progress_start, desc=f"Converting {model_label}")
|
213 |
-
mlmodel = export(
|
214 |
-
preprocessor,
|
215 |
-
model,
|
216 |
-
coreml_config,
|
217 |
-
quantize=precision,
|
218 |
-
compute_units=compute_units,
|
219 |
-
)
|
220 |
-
|
221 |
-
filename = output
|
222 |
-
if seq2seq == "encoder":
|
223 |
-
filename = filename.parent / ("encoder_" + filename.name)
|
224 |
-
elif seq2seq == "decoder":
|
225 |
-
filename = filename.parent / ("decoder_" + filename.name)
|
226 |
-
filename = filename.as_posix()
|
227 |
-
|
228 |
-
mlmodel.save(filename)
|
229 |
-
|
230 |
-
if _is_macos() and _macos_version() >= (12, 0):
|
231 |
-
progress(progress_end * 0.8, desc=f"Validating {model_label}")
|
232 |
-
if tolerance is None:
|
233 |
-
tolerance = coreml_config.atol_for_validation
|
234 |
-
validate_model_outputs(coreml_config, preprocessor, model, mlmodel, tolerance)
|
235 |
-
progress(progress_end, desc=f"Done converting {model_label}")
|
236 |
-
|
237 |
-
|
238 |
-
def push_to_hub(destination, directory, task, precision, token=None):
|
239 |
-
api = HfApi(token=token)
|
240 |
-
api.create_repo(destination, token=token, exist_ok=True)
|
241 |
-
commit_message="Add Core ML conversion"
|
242 |
-
api.upload_folder(
|
243 |
-
folder_path=directory,
|
244 |
-
repo_id=destination,
|
245 |
-
token=token,
|
246 |
-
create_pr=True,
|
247 |
-
commit_message=commit_message,
|
248 |
-
commit_description=f"Core ML conversion, task={task}, precision={precision}",
|
249 |
-
)
|
250 |
-
|
251 |
-
subprocess.run(["rm", "-rf", directory])
|
252 |
-
return get_pr_url(HfApi(token=token), destination, commit_message)
|
253 |
-
|
254 |
-
|
255 |
-
def cleanup(model_id, exported):
|
256 |
-
if exported:
|
257 |
-
shutil.rmtree(exported)
|
258 |
-
|
259 |
-
# We remove the model from the huggingface cache, so it will have to be downloaded again
|
260 |
-
# if the user wants to convert it for a different task or precision.
|
261 |
-
# Alternatively, we could remove models older than 1 day or so.
|
262 |
-
cache_info = scan_cache_dir()
|
263 |
-
try:
|
264 |
-
repo = next(repo for repo in cache_info.repos if repo.repo_id==model_id)
|
265 |
-
except StopIteration:
|
266 |
-
# The model was not in the cache!
|
267 |
-
return
|
268 |
-
|
269 |
-
if repo is not None:
|
270 |
-
for revision in repo.revisions:
|
271 |
-
delete_strategy = cache_info.delete_revisions(revision.commit_hash)
|
272 |
-
delete_strategy.execute()
|
273 |
-
|
274 |
-
|
275 |
-
def convert(model_id, task,
|
276 |
-
compute_units, precision, tolerance, framework,
|
277 |
-
push_destination, destination_model, token,
|
278 |
-
progress=gr.Progress()):
|
279 |
-
model_id = url_to_model_id(model_id)
|
280 |
-
task = reverse_tasks_mapping[task]
|
281 |
-
compute_units = compute_units_mapping[compute_units]
|
282 |
-
precision = precision_mapping[precision]
|
283 |
-
tolerance = tolerance_mapping[tolerance]
|
284 |
-
framework = framework_mapping[framework]
|
285 |
-
push_destination = push_mapping[push_destination]
|
286 |
-
if push_destination == "pr":
|
287 |
-
destination_model = model_id
|
288 |
-
|
289 |
-
if token is None or token == "":
|
290 |
-
return error_str("Please provide a token to push to the Hub.", open_discussion=False)
|
291 |
-
|
292 |
-
# TODO: support legacy format
|
293 |
-
exported_base = Path("exported")/model_id
|
294 |
-
output = exported_base/"coreml"/task
|
295 |
-
output.mkdir(parents=True, exist_ok=True)
|
296 |
-
output = output/f"{precision}_model.mlpackage"
|
297 |
-
|
298 |
-
try:
|
299 |
-
progress(0, desc="Downloading model")
|
300 |
-
|
301 |
-
preprocessor = get_preprocessor(model_id)
|
302 |
-
model = FeaturesManager.get_model_from_feature(task, model_id, framework=framework)
|
303 |
-
_, model_coreml_config = FeaturesManager.check_supported_model_or_raise(model, feature=task)
|
304 |
-
|
305 |
-
if task in ["seq2seq-lm", "speech-seq2seq"]:
|
306 |
-
convert_model(
|
307 |
-
preprocessor,
|
308 |
-
model,
|
309 |
-
model_coreml_config,
|
310 |
-
compute_units,
|
311 |
-
precision,
|
312 |
-
tolerance,
|
313 |
-
output,
|
314 |
-
seq2seq="encoder",
|
315 |
-
progress=progress,
|
316 |
-
progress_start=0.1,
|
317 |
-
progress_end=0.4,
|
318 |
-
)
|
319 |
-
progress(0.4, desc="Converting decoder")
|
320 |
-
convert_model(
|
321 |
-
preprocessor,
|
322 |
-
model,
|
323 |
-
model_coreml_config,
|
324 |
-
compute_units,
|
325 |
-
precision,
|
326 |
-
tolerance,
|
327 |
-
output,
|
328 |
-
seq2seq="decoder",
|
329 |
-
progress=progress,
|
330 |
-
progress_start=0.4,
|
331 |
-
progress_end=0.7,
|
332 |
-
)
|
333 |
-
else:
|
334 |
-
convert_model(
|
335 |
-
preprocessor,
|
336 |
-
model,
|
337 |
-
model_coreml_config,
|
338 |
-
compute_units,
|
339 |
-
precision,
|
340 |
-
tolerance,
|
341 |
-
output,
|
342 |
-
progress=progress,
|
343 |
-
progress_end=0.7,
|
344 |
-
)
|
345 |
-
|
346 |
-
progress(0.7, "Uploading model to Hub")
|
347 |
-
pr_url = push_to_hub(destination_model, exported_base, task, precision, token=token)
|
348 |
-
progress(1, "Done")
|
349 |
-
|
350 |
-
cleanup(model_id, exported_base)
|
351 |
-
|
352 |
-
did_validate = _is_macos() and _macos_version() >= (12, 0)
|
353 |
-
result = f"""### Successfully converted!
|
354 |
-
We opened a PR to add the Core ML weights to the model repo. Please, view and merge the PR [here]({pr_url}).
|
355 |
-
|
356 |
-
{f"**Note**: model could not be automatically validated as this Space is not running on macOS." if not did_validate else ""}
|
357 |
-
"""
|
358 |
-
return result
|
359 |
-
except Exception as e:
|
360 |
-
return error_str(e, model=model_id, task=task, framework=framework, compute_units=compute_units, precision=precision, tolerance=tolerance)
|
361 |
-
|
362 |
-
DESCRIPTION = """
|
363 |
-
## Convert a `transformers` model to Core ML
|
364 |
-
|
365 |
-
With this Space you can try to convert a transformers model to Core ML. It uses the 🤗 Hugging Face [Exporters repo](https://github.com/huggingface/exporters) under the hood.
|
366 |
-
|
367 |
-
Note that not all models are supported. If you get an error on a model you'd like to convert, please open an issue in the discussions tab of this Space. You'll get a link to do it when an error occurs.
|
368 |
-
"""
|
369 |
-
|
370 |
-
with gr.Blocks() as demo:
|
371 |
-
gr.Markdown(DESCRIPTION)
|
372 |
-
with gr.Row():
|
373 |
-
with gr.Column(scale=2):
|
374 |
-
gr.Markdown("## 1. Load model info")
|
375 |
-
input_model = gr.Textbox(
|
376 |
-
max_lines=1,
|
377 |
-
label="Model name or URL, such as apple/mobilevit-small",
|
378 |
-
placeholder="pcuenq/distilbert-base-uncased",
|
379 |
-
value="pcuenq/distilbert-base-uncased",
|
380 |
-
)
|
381 |
-
btn_get_tasks = gr.Button("Load")
|
382 |
-
with gr.Column(scale=3):
|
383 |
-
with gr.Column(visible=False) as group_settings:
|
384 |
-
gr.Markdown("## 2. Select Task")
|
385 |
-
radio_tasks = gr.Radio(label="Choose the task for the converted model.")
|
386 |
-
gr.Markdown("The `default` task is suitable for feature extraction.")
|
387 |
-
radio_framework = gr.Radio(
|
388 |
-
visible=False,
|
389 |
-
label="Framework",
|
390 |
-
choices=framework_labels,
|
391 |
-
value=framework_labels[0],
|
392 |
-
)
|
393 |
-
radio_compute = gr.Radio(
|
394 |
-
label="Compute Units",
|
395 |
-
choices=compute_units_labels,
|
396 |
-
value=compute_units_labels[0],
|
397 |
-
)
|
398 |
-
radio_precision = gr.Radio(
|
399 |
-
label="Precision",
|
400 |
-
choices=precision_labels,
|
401 |
-
value=precision_labels[0],
|
402 |
-
)
|
403 |
-
radio_tolerance = gr.Radio(
|
404 |
-
label="Absolute Tolerance for Validation",
|
405 |
-
choices=tolerance_labels,
|
406 |
-
value=tolerance_labels[0],
|
407 |
-
)
|
408 |
-
|
409 |
-
with gr.Group():
|
410 |
-
text_token = gr.Textbox(label="Hugging Face Token", placeholder="hf_xxxx", value="")
|
411 |
-
radio_push = gr.Radio(
|
412 |
-
label="Destination Model",
|
413 |
-
choices=push_labels,
|
414 |
-
value=push_labels[0],
|
415 |
-
)
|
416 |
-
# TODO: public/private
|
417 |
-
text_destination = gr.Textbox(visible=False, label="Destination model name", value="")
|
418 |
-
|
419 |
-
btn_convert = gr.Button("Convert & Push")
|
420 |
-
gr.Markdown("Conversion will take a few minutes.")
|
421 |
-
|
422 |
-
|
423 |
-
error_output = gr.Markdown(label="Output")
|
424 |
-
|
425 |
-
# # Clear output
|
426 |
-
# btn_get_tasks.click(lambda _: gr.update(value=''), None, error_output)
|
427 |
-
# input_model.submit(lambda _: gr.update(value=''), None, error_output)
|
428 |
-
# btn_convert.click(lambda _: gr.update(value=''), None, error_output)
|
429 |
-
|
430 |
-
input_model.submit(
|
431 |
-
fn=on_model_change,
|
432 |
-
inputs=input_model,
|
433 |
-
outputs=[group_settings, radio_tasks, radio_framework, error_output],
|
434 |
-
queue=False,
|
435 |
-
scroll_to_output=True
|
436 |
-
)
|
437 |
-
btn_get_tasks.click(
|
438 |
-
fn=on_model_change,
|
439 |
-
inputs=input_model,
|
440 |
-
outputs=[group_settings, radio_tasks, radio_framework, error_output],
|
441 |
-
queue=False,
|
442 |
-
scroll_to_output=True
|
443 |
-
)
|
444 |
-
|
445 |
-
btn_convert.click(
|
446 |
-
fn=convert,
|
447 |
-
inputs=[input_model, radio_tasks, radio_compute, radio_precision, radio_tolerance, radio_framework, radio_push, text_destination, text_token],
|
448 |
-
outputs=error_output,
|
449 |
-
scroll_to_output=True,
|
450 |
-
# api_name="convert",
|
451 |
-
)
|
452 |
-
|
453 |
-
radio_push.change(
|
454 |
-
lambda x: gr.update(visible=x == "Create a new repo"),
|
455 |
-
inputs=radio_push,
|
456 |
-
outputs=text_destination,
|
457 |
-
queue=False,
|
458 |
-
scroll_to_output=False
|
459 |
-
)
|
460 |
-
|
461 |
-
gr.HTML("""
|
462 |
-
<div style="border-top: 0.5px solid #303030;">
|
463 |
-
<br>
|
464 |
-
<p style="color:gray;font-size:smaller;font-style:italic">Adapted from https://huggingface.co/spaces/diffusers/sd-to-diffusers/tree/main</p><br>
|
465 |
-
</div>
|
466 |
-
""")
|
467 |
-
|
468 |
-
demo.queue(concurrency_count=1, max_size=10)
|
469 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
huggingface_hub
|
2 |
-
transformers
|
3 |
-
coremltools
|
4 |
-
git+https://github.com/huggingface/exporters.git
|
5 |
-
torch~=1.13
|
|
|
|
|
|
|
|
|
|
|
|
startup.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
# start tailscale
|
4 |
+
echo "Start tailscale"
|
5 |
+
mkdir -p /tmp/tailscale
|
6 |
+
/bin/tailscaled --tun=userspace-networking --outbound-http-proxy-listen=localhost:1055 --state=/var/lib/tailscale/tailscaled.state --socket=/var/run/tailscale/tailscaled.sock &
|
7 |
+
HOSTNAME=${SPACE_HOST#"https://"}
|
8 |
+
/bin/tailscale up --authkey ${TS_AUTHKEY} --hostname=${HOSTNAME} --accept-routes --accept-dns
|
9 |
+
echo "Tailscale started"
|
10 |
+
echo
|
11 |
+
|
12 |
+
echo "redirect 7860 -> backend through tailscale"
|
13 |
+
socat TCP4-LISTEN:7860,reuseaddr,fork PROXY:localhost:10.254.0.11:7860,proxyport=1055
|