Spaces:
Sleeping
Sleeping
import streamlit as st | |
# Custom CSS to change the background color and add 3D arrows | |
st.markdown(""" | |
<style> | |
.main { | |
background-color: #f0f2f6; | |
} | |
.separator { | |
border-top: 3px solid #bbb; | |
margin-top: 20px; | |
margin-bottom: 20px; | |
} | |
.content { | |
color: #333333; | |
} | |
.arrow { | |
font-size: 24px; | |
text-align: center; | |
margin-top: -10px; | |
margin-bottom: -10px; | |
} | |
.center-image { | |
display: block; | |
margin-left: auto; | |
margin-right: auto; | |
width: 50%; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Initialize session state | |
if 'open_expander' not in st.session_state: | |
st.session_state.open_expander = None | |
# Page title | |
st.title("Data Analysis Roadmap") | |
# Centered Image | |
st.image("images/data_analysis.png", use_column_width='always', output_format='PNG') | |
# Introduction | |
st.header("Introduction") | |
st.markdown("<div class='content'>This roadmap is designed for individuals with a basic understanding of Data Analysis. " | |
"It outlines the key topics and tools essential for advancing your skills in data analysis.</div>", unsafe_allow_html=True) | |
# Helper function to add images with 3D arrows | |
def add_skill_section(title, image_path, description, key): | |
if st.session_state.open_expander == key: | |
with st.expander(title, expanded=True): | |
st.image(image_path, width=100) | |
st.markdown(f"<div class='content'>{description}</div>", unsafe_allow_html=True) | |
st.session_state.open_expander = key | |
else: | |
with st.expander(title): | |
if st.button("Expand", key=key): | |
st.session_state.open_expander = key | |
st.experimental_rerun() | |
#st.markdown('<div class="arrow">⬇️</div>', unsafe_allow_html=True) | |
# Excel Section | |
add_skill_section("Excel", "images/excel_logo.png", """ | |
Excel is a powerful tool for data manipulation and visualization. It's widely used due to its accessibility and robust features. | |
**Skills:** | |
- **Data Cleaning**: Removing errors and inconsistencies to ensure data quality. | |
- *Example*: Cleaning a sales dataset to remove duplicates. | |
- **Data Visualization**: Creating charts and graphs to represent data visually. | |
- *Example*: Visualizing sales trends over time with line charts. | |
- **Pivot Tables**: Summarizing data for easy analysis. | |
- *Example*: Summarizing sales by region and product. | |
- **Formulas and Functions**: Automating calculations and data manipulation. | |
- *Example*: Using VLOOKUP to combine data from multiple sheets. | |
- **Data Analysis Toolpak**: Advanced statistical analysis. | |
- *Example*: Running regression analysis on marketing data. | |
""", key="excel") | |
# SQL Section | |
add_skill_section("SQL", "images/sql_logo.png", """ | |
SQL is essential for querying and managing databases. It's used to extract, manipulate, and analyze data stored in relational databases. | |
**Skills:** | |
- **Basic Queries (SELECT, INSERT, UPDATE, DELETE)**: Retrieving and modifying data. | |
- *Example*: Fetching customer information from a database. | |
- **Joins (INNER, LEFT, RIGHT, FULL)**: Combining data from multiple tables. | |
- *Example*: Joining customer and order tables to get complete order details. | |
- **Aggregations (GROUP BY, HAVING)**: Summarizing data. | |
- *Example*: Calculating total sales per region. | |
- **Subqueries and CTEs**: Writing complex queries. | |
- *Example*: Finding customers with orders above a certain amount. | |
- **Indexing and Optimization**: Improving query performance. | |
- *Example*: Adding an index to speed up search queries. | |
""", key="sql") | |
# Python Section | |
add_skill_section("Data Analysis Python", "images/python_logo.png", """ | |
Python is a versatile language used for data analysis, offering powerful libraries for various data-related tasks. | |
**Skills:** | |
- **Libraries: pandas, numpy, matplotlib, seaborn**: Essential libraries for data manipulation and visualization. | |
- *Example*: Using pandas for data cleaning, matplotlib for plotting sales trends. | |
- **Data Cleaning and Preparation**: Preparing data for analysis. | |
- *Example*: Handling missing values in a dataset. | |
- **Data Visualization**: Creating detailed and interactive plots. | |
- *Example*: Creating scatter plots to visualize relationships between variables. | |
- **Statistical Analysis**: Performing statistical tests and analyses. | |
- *Example*: Running a t-test to compare means of two groups. | |
- **Automating Data Workflows**: Automating repetitive tasks. | |
- *Example*: Writing a script to fetch and process data daily. | |
""", key="python") | |
# Data Visualization Tools Section | |
add_skill_section("Power BI", "images/powerbi_logo.png", """ | |
Power BI is a business analytics tool that provides interactive visualizations and business intelligence capabilities. | |
**Skills:** | |
- **Report Creation**: Designing detailed reports. | |
- *Example*: Creating financial reports for stakeholders. | |
- **DAX Functions**: Using Data Analysis Expressions for complex calculations. | |
- *Example*: Calculating year-over-year growth. | |
- **Data Modeling**: Structuring data for efficient analysis. | |
- *Example*: Creating a data model to analyze customer behavior. | |
""", key="powerbi") | |
# Statistics Section | |
add_skill_section("Statistics", "images/statistics_logo.png", """ | |
Statistics form the backbone of data analysis, enabling data-driven decision-making. | |
**Skills:** | |
- **Descriptive Statistics (Mean, Median, Mode)**: Summarizing data. | |
- *Example*: Calculating average customer age. | |
- **Inferential Statistics (Hypothesis Testing, Confidence Intervals)**: Making predictions and generalizations. | |
- *Example*: Testing if a new marketing strategy increases sales. | |
- **Regression Analysis**: Understanding relationships between variables. | |
- *Example*: Analyzing the impact of price changes on sales volume. | |
- **Probability Theory**: Assessing risk and uncertainty. | |
- *Example*: Calculating the likelihood of customer churn. | |
""", key="statistics") | |