File size: 1,494 Bytes
4a0c9f0
f79530d
4a0c9f0
 
 
71bddc2
4a0c9f0
f79530d
4a0c9f0
 
 
 
 
 
eadc99d
 
4a0c9f0
eadc99d
 
 
 
 
 
 
 
 
 
 
 
4a0c9f0
 
 
 
 
 
 
 
 
 
 
 
 
71bddc2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
import torch

# Load model and processor
model_id = "cosmo3769/finetuned_paligemma_vqav2_small"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")

# Define inference function
def process_image(image, prompt):
    # Process the image and prompt using the processor
    inputs = processor(image.convert("RGB"), prompt, return_tensors="pt")
    
    # Print the inputs to debug
    print("Processor outputs:", inputs)
    
    try:
        # Generate output from the model
        output = model.generate(**inputs, max_new_tokens=20)
        
        # Decode and return the output
        decoded_output = processor.decode(output[0], skip_special_tokens=True)
        
        # Return the answer (exclude the prompt part from output)
        return decoded_output[len(prompt):]
    except IndexError as e:
        print(f"IndexError: {e}")
        return "An error occurred during processing."

# Define the Gradio interface
inputs = [
    gr.Image(type="pil"),
    gr.Textbox(label="Prompt", placeholder="Enter your question")
]
outputs = gr.Textbox(label="Answer")

# Create the Gradio app
demo = gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Finetuned PaliGemma on VQAv2 Small Dataset", 
                    description="Ask a question about an image")

# Launch the app
demo.launch()