Spaces:
Runtime error
Runtime error
first release detecting signature
Browse files- .gitignore +2 -0
- app.py +67 -0
- data/photologo-1-1.jpg +0 -0
- data/times-square.jpg +0 -0
- requirements.txt +10 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
output
|
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL.Image
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from craft_text_detector import Craft
|
6 |
+
|
7 |
+
craft = Craft(output_dir='output', crop_type="box", cuda=True, export_extra=True)
|
8 |
+
|
9 |
+
dw=0.3
|
10 |
+
dh=0.25
|
11 |
+
def is_nw(box):
|
12 |
+
"""
|
13 |
+
A box happen to be a 4-pixel list in order
|
14 |
+
1 -- 2
|
15 |
+
4 -- 3
|
16 |
+
"""
|
17 |
+
return box[2][0]<=dw and box[2][1]<= dh
|
18 |
+
|
19 |
+
def is_ne(box):
|
20 |
+
return box[3][0]>=1-dw and box[3][1]<= dh
|
21 |
+
|
22 |
+
def is_se(box):
|
23 |
+
return box[0][0]>=1-dw and box[0][1]>= 1-dh
|
24 |
+
|
25 |
+
def is_sw(box):
|
26 |
+
return box[1][0]<=dw and box[1][1]>= 1-dh
|
27 |
+
|
28 |
+
def is_corner(box)->bool:
|
29 |
+
""" @:returns true if the box is located in any corner """
|
30 |
+
return is_nw(box) or is_ne(box) or is_se(box) or is_sw(box)
|
31 |
+
|
32 |
+
dhhf=0.2 # dh for header and footer
|
33 |
+
def is_footer(box)->bool:
|
34 |
+
""" true if for the 2 first points, y>0.8 """
|
35 |
+
return box[0][1]>=1-dhhf and box[1][1]>=1-dhhf
|
36 |
+
|
37 |
+
def is_header(box)->bool:
|
38 |
+
""" true if for the 2 last points, y<0.2 """
|
39 |
+
return box[2][1]<=dhhf and box[3][1]<=dhhf
|
40 |
+
|
41 |
+
def is_signature(prediction_result) -> bool:
|
42 |
+
""" true if any of the boxes is at any corner """
|
43 |
+
for box in prediction_result['boxes_as_ratios']:
|
44 |
+
if is_corner(box) or is_header(box) or is_footer(box):
|
45 |
+
return True
|
46 |
+
return False
|
47 |
+
|
48 |
+
def detect(image: PIL.Image.Image):
|
49 |
+
result = craft.detect_text( np.asarray(image))
|
50 |
+
return result['boxes'], is_signature(result)
|
51 |
+
|
52 |
+
def process(image:PIL.Image.Image):
|
53 |
+
if image is None:
|
54 |
+
return None,0
|
55 |
+
boxes,signed = detect( image)
|
56 |
+
annotated = PIL.Image.open('output/image_text_detection.png') # image with boxes displayed
|
57 |
+
return annotated, len(boxes), signed
|
58 |
+
|
59 |
+
gr.Interface(
|
60 |
+
fn = process,
|
61 |
+
inputs = [ gr.Image(type="pil", label="Input") ],
|
62 |
+
outputs = [ gr.Image(type="pil", label="Output"), gr.Label(label="nb of text detections"), gr.Label(label="Has signature") ],
|
63 |
+
title="Detect signature in image",
|
64 |
+
description="Is the photo or image watermarked by a signature?",
|
65 |
+
examples=[['data/photologo-1-1.jpg'], ['data/times-square.jpg']],
|
66 |
+
allow_flagging="never"
|
67 |
+
).launch(debug=True, enable_queue=True)
|
data/photologo-1-1.jpg
ADDED
data/times-square.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
Pillow
|
3 |
+
opencv-python
|
4 |
+
numpy
|
5 |
+
PyYAML
|
6 |
+
seaborn
|
7 |
+
pandas
|
8 |
+
matplotlib
|
9 |
+
scipy
|
10 |
+
psutil
|