"""import gradio as gr from sentence_transformers import SentenceTransformer, util i18n_model = SentenceTransformer('distiluse-base-multilingual-cased-v2') def inference(s1:str, s2:str): score = util.cos_sim(i18n_model.encode(s1), i18n_model.encode(s2)).item() return f'{score:.3f}' gr.Interface( inference, [ gr.Textbox(label="Sentence 1"), gr.Textbox(label="Sentence 2") ], [ gr.components.Label(label="Similarity score") ], title="Similarity score between 2 sentences", description="In this demo do provide 2 sentences bellow. They can even be in distinct languages. Powered by S-BERT multilingual model : https://www.sbert.net.", examples=[['The sentences are mapped such that sentences with similar meanings are close in vector space.', 'Les phrases sont mappées de manière à ce que les phrases ayant des significations similaires soient proches dans l\'espace vectoriel.'], ['You do not need to specify the input language.', 'You can use any language.']], live=True, allow_flagging="never" ).launch(debug=True, enable_queue=True)""" import streamlit as st from sentence_transformers import SentenceTransformer, util i18n_model = SentenceTransformer('distiluse-base-multilingual-cased-v2') #def inference(s1:str, s2:str): # score = util.cos_sim(i18n_model.encode(s1), i18n_model.encode(s2)).item() # return f'{score:.3f}' txt1 = st.text_area('Text1','Account issues Create, download, and send white-label reports to your customers to keep them posted on how their campaigns are going. Watch a short video review of the Dedicated SEO Dashboard ') list1 = txt1.split(" ") txt2 = st.text_area('Text2','Проблеми з обліковим записом Створюйте, завантажуйте та надсилайте своїм клієнтам звіти з білою етикеткою, щоб вони були в курсі того, як проходять їхні кампанії. ') list2 = txt2.split(" ") i = 1 while i < 1000: st.write(util.cos_sim(i18n_model.encode(list1[i]), i18n_model.encode(list2[i])).item()) i += 1