import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import math import nltk import torch model_name = "craigchen/BART-139M-ecommerce-customer-service-anwser-to-query-generation" max_input_length = 25 st.header("根据答案生成问题") st_model_load = st.text('Loading a2q generator model...') @st.cache(allow_output_mutation=True) def load_model(): print("Loading model...") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) print("Model loaded!") return tokenizer, model tokenizer, model = load_model() st.success('Model loaded!') st_model_load.text("") with st.sidebar: st.header("Model parameters") if 'num_queries' not in st.session_state: st.session_state.num_titles = 5 def on_change_num_titles(): st.session_state.num_titles = num_titles num_titles = st.slider("Number of queries to generate", min_value=1, max_value=10, value=1, step=1, on_change=on_change_num_titles) if 'temperature' not in st.session_state: st.session_state.temperature = 0.7 def on_change_temperatures(): st.session_state.temperature = temperature temperature = st.slider("Temperature", min_value=0.1, max_value=1.5, value=1.5, step=0.05, on_change=on_change_temperatures) st.markdown("_High temperature means that results are more random_") if 'text' not in st.session_state: st.session_state.text = "" st_text_area = st.text_area('Text to generate the query for', value=st.session_state.text, height=100) def generate_title(): st.session_state.text = st_text_area # tokenize text inputs = ["ask: " + st_text_area] inputs = tokenizer(inputs, return_tensors="pt") # compute span boundaries num_tokens = len(inputs["input_ids"][0]) print(f"Input has {num_tokens} tokens") max_input_length = 25 num_spans = math.ceil(num_tokens / max_input_length) print(f"Input has {num_spans} spans") overlap = math.ceil((num_spans * max_input_length - num_tokens) / max(num_spans - 1, 1)) spans_boundaries = [] start = 0 for i in range(num_spans): spans_boundaries.append([start + max_input_length * i, start + max_input_length * (i + 1)]) start -= overlap print(f"Span boundaries are {spans_boundaries}") spans_boundaries_selected = [] j = 0 for _ in range(num_titles): spans_boundaries_selected.append(spans_boundaries[j]) j += 1 if j == len(spans_boundaries): j = 0 print(f"Selected span boundaries are {spans_boundaries_selected}") # transform input with spans tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected] tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] for boundary in spans_boundaries_selected] inputs = { "input_ids": torch.stack(tensor_ids), "attention_mask": torch.stack(tensor_masks) } # compute predictions outputs = model.generate(**inputs, do_sample=True, temperature=temperature) decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) predicted_titles = [decoded_output for decoded_output in decoded_outputs] # predicted_titles = [nltk.sent_tokenize(decoded_output.strip())[0] for decoded_output in decoded_outputs] st.session_state.titles = predicted_titles # generate title button st_generate_button = st.button('生成query', on_click=generate_title) # title generation labels if 'titles' not in st.session_state: st.session_state.titles = [] if len(st.session_state.titles) > 0: with st.container(): st.subheader("Generated queries") for title in st.session_state.titles: st.markdown("__" + title + "__")