Spaces:
No application file
No application file
import copy | |
import math | |
from typing import List, Union | |
import datasets as ds | |
import evaluate | |
import numpy as np | |
import numpy.typing as npt | |
_DESCRIPTION = r"""\ | |
Computes the extent of spatial non-alignment between elements. | |
""" | |
_KWARGS_DESCRIPTION = """\ | |
FIXME | |
""" | |
_CITATION = """\ | |
@inproceedings{hsu2023posterlayout, | |
title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, | |
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, | |
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
pages={6018--6026}, | |
year={2023} | |
} | |
@article{li2020attribute, | |
title={Attribute-conditioned layout gan for automatic graphic design}, | |
author={Li, Jianan and Yang, Jimei and Zhang, Jianming and Liu, Chang and Wang, Christina and Xu, Tingfa}, | |
journal={IEEE Transactions on Visualization and Computer Graphics}, | |
volume={27}, | |
number={10}, | |
pages={4039--4048}, | |
year={2020}, | |
publisher={IEEE} | |
} | |
""" | |
class LayoutNonAlignment(evaluate.Metric): | |
def __init__( | |
self, | |
canvas_width: int, | |
canvas_height: int, | |
**kwargs, | |
) -> None: | |
super().__init__(**kwargs) | |
self.canvas_width = canvas_width | |
self.canvas_height = canvas_height | |
def _info(self) -> evaluate.EvaluationModuleInfo: | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=ds.Features( | |
{ | |
"predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), | |
"gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), | |
} | |
), | |
codebase_urls=[ | |
"https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L306-L339" | |
], | |
) | |
def ali_delta(self, xs: npt.NDArray[np.float64]) -> float: | |
n = len(xs) | |
min_delta = np.inf | |
for i in range(n): | |
for j in range(i + 1, n): | |
delta = abs(xs[i] - xs[j]) | |
min_delta = min(min_delta, delta) | |
return min_delta | |
def ali_g(self, x: float) -> float: | |
return -math.log(1 - x, 10) | |
def get_rid_of_invalid( | |
self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] | |
) -> npt.NDArray[np.int64]: | |
assert len(predictions) == len(gold_labels) | |
w = self.canvas_width / 100 | |
h = self.canvas_height / 100 | |
for i, prediction in enumerate(predictions): | |
for j, b in enumerate(prediction): | |
xl, yl, xr, yr = b | |
xl = max(0, xl) | |
yl = max(0, yl) | |
xr = min(self.canvas_width, xr) | |
yr = min(self.canvas_height, yr) | |
if abs((xr - xl) * (yr - yl)) < w * h * 10: | |
if gold_labels[i, j]: | |
gold_labels[i, j] = 0 | |
return gold_labels | |
def _compute( | |
self, | |
*, | |
predictions: Union[npt.NDArray[np.float64], List[List[float]]], | |
gold_labels: Union[npt.NDArray[np.int64], List[int]], | |
) -> float: | |
predictions = np.array(predictions) | |
gold_labels = np.array(gold_labels) | |
predictions[:, :, ::2] *= self.canvas_width | |
predictions[:, :, 1::2] *= self.canvas_height | |
gold_labels = self.get_rid_of_invalid( | |
predictions=predictions, gold_labels=gold_labels | |
) | |
metrics: float = 0.0 | |
for gold_label, prediction in zip(gold_labels, predictions): | |
ali = 0.0 | |
mask = (gold_label > 0).reshape(-1) | |
mask_box = prediction[mask] | |
theda = [] | |
for mb in mask_box: | |
pos = copy.deepcopy(mb) | |
pos[0] /= self.canvas_width | |
pos[2] /= self.canvas_width | |
pos[1] /= self.canvas_height | |
pos[3] /= self.canvas_height | |
theda.append( | |
[ | |
pos[0], | |
pos[1], | |
(pos[0] + pos[2]) / 2, | |
(pos[1] + pos[3]) / 2, | |
pos[2], | |
pos[3], | |
] | |
) | |
theda_arr = np.array(theda) | |
if theda_arr.shape[0] <= 1: | |
continue | |
n = len(mask_box) | |
for _ in range(n): | |
g_val = [] | |
for j in range(6): | |
xys = theda_arr[:, j] | |
delta = self.ali_delta(xys) | |
g_val.append(self.ali_g(delta)) | |
ali += min(g_val) | |
metrics += ali | |
return metrics / len(gold_labels) | |