layout-overlay / layout-overlay.py
shunk031's picture
deploy: fc0c10e734116107123b6dce81a6df2cbbf84dfe
1b569b1
from typing import List, Union
import datasets as ds
import evaluate
import numpy as np
import numpy.typing as npt
_DESCRIPTION = r"""\
Computes the average IoU of all pairs of elements except for underlay.
"""
_KWARGS_DESCRIPTION = """\
FIXME
"""
_CITATION = """\
@inproceedings{hsu2023posterlayout,
title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout},
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={6018--6026},
year={2023}
}
"""
class LayoutOverlay(evaluate.Metric):
def __init__(
self,
canvas_width: int,
canvas_height: int,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.canvas_width = canvas_width
self.canvas_height = canvas_height
def _info(self) -> evaluate.EvaluationModuleInfo:
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=ds.Features(
{
"predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))),
"gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))),
}
),
codebase_urls=[
"https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L205-L222",
],
)
def get_rid_of_invalid(
self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64]
) -> npt.NDArray[np.int64]:
assert len(predictions) == len(gold_labels)
w = self.canvas_width / 100
h = self.canvas_height / 100
for i, prediction in enumerate(predictions):
for j, b in enumerate(prediction):
xl, yl, xr, yr = b
xl = max(0, xl)
yl = max(0, yl)
xr = min(self.canvas_width, xr)
yr = min(self.canvas_height, yr)
if abs((xr - xl) * (yr - yl)) < w * h * 10:
if gold_labels[i, j]:
gold_labels[i, j] = 0
return gold_labels
def metrics_iou(
self, bb1: npt.NDArray[np.float64], bb2: npt.NDArray[np.float64]
) -> float:
# shape: bb1 = (4,), bb2 = (4,)
xl_1, yl_1, xr_1, yr_1 = bb1
xl_2, yl_2, xr_2, yr_2 = bb2
w_1 = xr_1 - xl_1
w_2 = xr_2 - xl_2
h_1 = yr_1 - yl_1
h_2 = yr_2 - yl_2
w_inter = min(xr_1, xr_2) - max(xl_1, xl_2)
h_inter = min(yr_1, yr_2) - max(yl_1, yl_2)
a_1 = w_1 * h_1
a_2 = w_2 * h_2
a_inter = w_inter * h_inter
if w_inter <= 0 or h_inter <= 0:
a_inter = 0
return a_inter / (a_1 + a_2 - a_inter)
def _compute(
self,
*,
predictions: Union[npt.NDArray[np.float64], List[List[float]]],
gold_labels: Union[npt.NDArray[np.int64], List[int]],
) -> float:
predictions = np.array(predictions)
gold_labels = np.array(gold_labels)
predictions[:, :, ::2] *= self.canvas_width
predictions[:, :, 1::2] *= self.canvas_height
gold_labels = self.get_rid_of_invalid(
predictions=predictions, gold_labels=gold_labels
)
score = 0.0
for gold_label, prediction in zip(gold_labels, predictions):
ove = 0.0
mask = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1)
mask_box = prediction[mask]
n = len(mask_box)
for i in range(n):
bb1 = mask_box[i]
for j in range(i + 1, n):
bb2 = mask_box[j]
ove += self.metrics_iou(bb1, bb2)
score += ove / n
return score / len(gold_labels)