Spaces:
No application file
No application file
from typing import List, Union | |
import datasets as ds | |
import evaluate | |
import numpy as np | |
import numpy.typing as npt | |
_DESCRIPTION = r"""\ | |
Computes the average IoU of all pairs of elements except for underlay. | |
""" | |
_KWARGS_DESCRIPTION = """\ | |
FIXME | |
""" | |
_CITATION = """\ | |
@inproceedings{hsu2023posterlayout, | |
title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, | |
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, | |
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, | |
pages={6018--6026}, | |
year={2023} | |
} | |
""" | |
class LayoutOverlay(evaluate.Metric): | |
def __init__( | |
self, | |
canvas_width: int, | |
canvas_height: int, | |
**kwargs, | |
) -> None: | |
super().__init__(**kwargs) | |
self.canvas_width = canvas_width | |
self.canvas_height = canvas_height | |
def _info(self) -> evaluate.EvaluationModuleInfo: | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=ds.Features( | |
{ | |
"predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), | |
"gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), | |
} | |
), | |
codebase_urls=[ | |
"https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L205-L222", | |
], | |
) | |
def get_rid_of_invalid( | |
self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] | |
) -> npt.NDArray[np.int64]: | |
assert len(predictions) == len(gold_labels) | |
w = self.canvas_width / 100 | |
h = self.canvas_height / 100 | |
for i, prediction in enumerate(predictions): | |
for j, b in enumerate(prediction): | |
xl, yl, xr, yr = b | |
xl = max(0, xl) | |
yl = max(0, yl) | |
xr = min(self.canvas_width, xr) | |
yr = min(self.canvas_height, yr) | |
if abs((xr - xl) * (yr - yl)) < w * h * 10: | |
if gold_labels[i, j]: | |
gold_labels[i, j] = 0 | |
return gold_labels | |
def metrics_iou( | |
self, bb1: npt.NDArray[np.float64], bb2: npt.NDArray[np.float64] | |
) -> float: | |
# shape: bb1 = (4,), bb2 = (4,) | |
xl_1, yl_1, xr_1, yr_1 = bb1 | |
xl_2, yl_2, xr_2, yr_2 = bb2 | |
w_1 = xr_1 - xl_1 | |
w_2 = xr_2 - xl_2 | |
h_1 = yr_1 - yl_1 | |
h_2 = yr_2 - yl_2 | |
w_inter = min(xr_1, xr_2) - max(xl_1, xl_2) | |
h_inter = min(yr_1, yr_2) - max(yl_1, yl_2) | |
a_1 = w_1 * h_1 | |
a_2 = w_2 * h_2 | |
a_inter = w_inter * h_inter | |
if w_inter <= 0 or h_inter <= 0: | |
a_inter = 0 | |
return a_inter / (a_1 + a_2 - a_inter) | |
def _compute( | |
self, | |
*, | |
predictions: Union[npt.NDArray[np.float64], List[List[float]]], | |
gold_labels: Union[npt.NDArray[np.int64], List[int]], | |
) -> float: | |
predictions = np.array(predictions) | |
gold_labels = np.array(gold_labels) | |
predictions[:, :, ::2] *= self.canvas_width | |
predictions[:, :, 1::2] *= self.canvas_height | |
gold_labels = self.get_rid_of_invalid( | |
predictions=predictions, gold_labels=gold_labels | |
) | |
score = 0.0 | |
for gold_label, prediction in zip(gold_labels, predictions): | |
ove = 0.0 | |
mask = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1) | |
mask_box = prediction[mask] | |
n = len(mask_box) | |
for i in range(n): | |
bb1 = mask_box[i] | |
for j in range(i + 1, n): | |
bb2 = mask_box[j] | |
ove += self.metrics_iou(bb1, bb2) | |
score += ove / n | |
return score / len(gold_labels) | |