from typing import List, Union import datasets as ds import evaluate import numpy as np import numpy.typing as npt _DESCRIPTION = r"""\ Computes the average IoU of all pairs of elements except for underlay. """ _KWARGS_DESCRIPTION = """\ FIXME """ _CITATION = """\ @inproceedings{hsu2023posterlayout, title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout}, author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={6018--6026}, year={2023} } """ class LayoutOverlay(evaluate.Metric): def __init__( self, canvas_width: int, canvas_height: int, **kwargs, ) -> None: super().__init__(**kwargs) self.canvas_width = canvas_width self.canvas_height = canvas_height def _info(self) -> evaluate.EvaluationModuleInfo: return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=ds.Features( { "predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))), "gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))), } ), codebase_urls=[ "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L205-L222", ], ) def get_rid_of_invalid( self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64] ) -> npt.NDArray[np.int64]: assert len(predictions) == len(gold_labels) w = self.canvas_width / 100 h = self.canvas_height / 100 for i, prediction in enumerate(predictions): for j, b in enumerate(prediction): xl, yl, xr, yr = b xl = max(0, xl) yl = max(0, yl) xr = min(self.canvas_width, xr) yr = min(self.canvas_height, yr) if abs((xr - xl) * (yr - yl)) < w * h * 10: if gold_labels[i, j]: gold_labels[i, j] = 0 return gold_labels def metrics_iou( self, bb1: npt.NDArray[np.float64], bb2: npt.NDArray[np.float64] ) -> float: # shape: bb1 = (4,), bb2 = (4,) xl_1, yl_1, xr_1, yr_1 = bb1 xl_2, yl_2, xr_2, yr_2 = bb2 w_1 = xr_1 - xl_1 w_2 = xr_2 - xl_2 h_1 = yr_1 - yl_1 h_2 = yr_2 - yl_2 w_inter = min(xr_1, xr_2) - max(xl_1, xl_2) h_inter = min(yr_1, yr_2) - max(yl_1, yl_2) a_1 = w_1 * h_1 a_2 = w_2 * h_2 a_inter = w_inter * h_inter if w_inter <= 0 or h_inter <= 0: a_inter = 0 return a_inter / (a_1 + a_2 - a_inter) def _compute( self, *, predictions: Union[npt.NDArray[np.float64], List[List[float]]], gold_labels: Union[npt.NDArray[np.int64], List[int]], ) -> float: predictions = np.array(predictions) gold_labels = np.array(gold_labels) predictions[:, :, ::2] *= self.canvas_width predictions[:, :, 1::2] *= self.canvas_height gold_labels = self.get_rid_of_invalid( predictions=predictions, gold_labels=gold_labels ) score = 0.0 for gold_label, prediction in zip(gold_labels, predictions): ove = 0.0 mask = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1) mask_box = prediction[mask] n = len(mask_box) for i in range(n): bb1 = mask_box[i] for j in range(i + 1, n): bb2 = mask_box[j] ove += self.metrics_iou(bb1, bb2) score += ove / n return score / len(gold_labels)