File size: 6,461 Bytes
bae937d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Dict, List, Union

import datasets as ds
import evaluate
import numpy as np
import numpy.typing as npt

_DESCRIPTION = r"""\
Computes the non-flatness of regions that text elements are solely put on, referring to CGL-GAN.

Computes the ratio of valid underlay elements to total underlay elements used in PosterLayout. Intuitively, underlay should be placed under other non-underlay elements.
- strict: scoring the underlay as:
    - 1: there is a non-underlay element completely inside
    - 0: otherwise
- loose: Calcurate (ai/a2).
"""

_KWARGS_DESCRIPTION = """\
FIXME
"""

_CITATION = """\
@inproceedings{hsu2023posterlayout,
  title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout},
  author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6018--6026},
  year={2023}
}
"""


class LayoutUnderlayEffectiveness(evaluate.Metric):
    def __init__(
        self,
        canvas_width: int,
        canvas_height: int,
        text_label_index: int = 1,
        decoration_label_index: int = 3,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.canvas_width = canvas_width
        self.canvas_height = canvas_height

        self.text_label_index = text_label_index
        self.decoration_label_index = decoration_label_index

    def _info(self) -> evaluate.EvaluationModuleInfo:
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=ds.Features(
                {
                    "predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))),
                    "gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))),
                }
            ),
            codebase_urls=[
                "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L224-L252",
                "https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L265-L292",
            ],
        )

    def get_rid_of_invalid(
        self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64]
    ) -> npt.NDArray[np.int64]:
        assert len(predictions) == len(gold_labels)

        w = self.canvas_width / 100
        h = self.canvas_height / 100

        for i, prediction in enumerate(predictions):
            for j, b in enumerate(prediction):
                xl, yl, xr, yr = b
                xl = max(0, xl)
                yl = max(0, yl)
                xr = min(self.canvas_width, xr)
                yr = min(self.canvas_height, yr)
                if abs((xr - xl) * (yr - yl)) < w * h * 10:
                    if gold_labels[i, j]:
                        gold_labels[i, j] = 0
        return gold_labels

    def metrics_inter_oneside(self, bb1, bb2):
        xl_1, yl_1, xr_1, yr_1 = bb1
        xl_2, yl_2, xr_2, yr_2 = bb2

        # w_1 = xr_1 - xl_1
        w_2 = xr_2 - xl_2
        # h_1 = yr_1 - yl_1
        h_2 = yr_2 - yl_2

        w_inter = min(xr_1, xr_2) - max(xl_1, xl_2)
        h_inter = min(yr_1, yr_2) - max(yl_1, yl_2)

        # a_1 = w_1 * h_1
        a_2 = w_2 * h_2
        a_inter = w_inter * h_inter
        if w_inter <= 0 or h_inter <= 0:
            a_inter = 0

        return a_inter / a_2

    def _compute_und_l(
        self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64]
    ) -> float:
        metrics, avali = 0.0, 0

        for gold_label, prediction in zip(gold_labels, predictions):
            und = 0
            mask_deco = (gold_label == 3).reshape(-1)
            mask_other = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1)
            box_deco = prediction[mask_deco]
            box_other = prediction[mask_other]
            n1, n2 = len(box_deco), len(box_other)
            if not n1:
                continue

            avali += 1
            for i in range(n1):
                max_ios = 0
                bb1 = box_deco[i]
                for j in range(n2):
                    bb2 = box_other[j]
                    ios = self.metrics_inter_oneside(bb1, bb2)
                    max_ios = max(max_ios, ios)
                und += max_ios
            metrics += und / n1

        return metrics / avali if avali > 0 else 0.0

    def _compute_und_s(
        self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64]
    ) -> float:
        def is_contain(bb1, bb2):
            xl_1, yl_1, xr_1, yr_1 = bb1
            xl_2, yl_2, xr_2, yr_2 = bb2

            c1 = xl_1 <= xl_2
            c2 = yl_1 <= yl_2
            c3 = xr_2 >= xr_2
            c4 = yr_1 >= yr_2

            return c1 and c2 and c3 and c4

        metrics, avali = 0.0, 0

        for gold_label, prediction in zip(gold_labels, predictions):
            und = 0
            mask_deco = (gold_label == 3).reshape(-1)
            mask_other = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1)
            box_deco = prediction[mask_deco]
            box_other = prediction[mask_other]
            n1, n2 = len(box_deco), len(box_other)
            if not n1:
                continue

            avali += 1
            for i in range(n1):
                bb1 = box_deco[i]
                for j in range(n2):
                    bb2 = box_other[j]
                    if is_contain(bb1, bb2):
                        und += 1
                        break
            metrics += und / n1

        return metrics / avali if avali > 0 else 0.0

    def _compute(
        self,
        *,
        predictions: Union[npt.NDArray[np.float64], List[List[float]]],
        gold_labels: Union[npt.NDArray[np.int64], List[int]],
    ) -> Dict[str, float]:
        predictions = np.array(predictions)
        gold_labels = np.array(gold_labels)

        predictions[:, :, ::2] *= self.canvas_width
        predictions[:, :, 1::2] *= self.canvas_height

        gold_labels = self.get_rid_of_invalid(
            predictions=predictions, gold_labels=gold_labels
        )
        return {
            "und_l": self._compute_und_l(
                predictions=predictions, gold_labels=gold_labels
            ),
            "und_s": self._compute_und_s(
                predictions=predictions, gold_labels=gold_labels
            ),
        }