Spaces:
No application file
No application file
File size: 6,461 Bytes
bae937d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
from typing import Dict, List, Union
import datasets as ds
import evaluate
import numpy as np
import numpy.typing as npt
_DESCRIPTION = r"""\
Computes the non-flatness of regions that text elements are solely put on, referring to CGL-GAN.
Computes the ratio of valid underlay elements to total underlay elements used in PosterLayout. Intuitively, underlay should be placed under other non-underlay elements.
- strict: scoring the underlay as:
- 1: there is a non-underlay element completely inside
- 0: otherwise
- loose: Calcurate (ai/a2).
"""
_KWARGS_DESCRIPTION = """\
FIXME
"""
_CITATION = """\
@inproceedings{hsu2023posterlayout,
title={Posterlayout: A new benchmark and approach for content-aware visual-textual presentation layout},
author={Hsu, Hsiao Yuan and He, Xiangteng and Peng, Yuxin and Kong, Hao and Zhang, Qing},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={6018--6026},
year={2023}
}
"""
class LayoutUnderlayEffectiveness(evaluate.Metric):
def __init__(
self,
canvas_width: int,
canvas_height: int,
text_label_index: int = 1,
decoration_label_index: int = 3,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.canvas_width = canvas_width
self.canvas_height = canvas_height
self.text_label_index = text_label_index
self.decoration_label_index = decoration_label_index
def _info(self) -> evaluate.EvaluationModuleInfo:
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=ds.Features(
{
"predictions": ds.Sequence(ds.Sequence(ds.Value("float64"))),
"gold_labels": ds.Sequence(ds.Sequence(ds.Value("int64"))),
}
),
codebase_urls=[
"https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L224-L252",
"https://github.com/PKU-ICST-MIPL/PosterLayout-CVPR2023/blob/main/eval.py#L265-L292",
],
)
def get_rid_of_invalid(
self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64]
) -> npt.NDArray[np.int64]:
assert len(predictions) == len(gold_labels)
w = self.canvas_width / 100
h = self.canvas_height / 100
for i, prediction in enumerate(predictions):
for j, b in enumerate(prediction):
xl, yl, xr, yr = b
xl = max(0, xl)
yl = max(0, yl)
xr = min(self.canvas_width, xr)
yr = min(self.canvas_height, yr)
if abs((xr - xl) * (yr - yl)) < w * h * 10:
if gold_labels[i, j]:
gold_labels[i, j] = 0
return gold_labels
def metrics_inter_oneside(self, bb1, bb2):
xl_1, yl_1, xr_1, yr_1 = bb1
xl_2, yl_2, xr_2, yr_2 = bb2
# w_1 = xr_1 - xl_1
w_2 = xr_2 - xl_2
# h_1 = yr_1 - yl_1
h_2 = yr_2 - yl_2
w_inter = min(xr_1, xr_2) - max(xl_1, xl_2)
h_inter = min(yr_1, yr_2) - max(yl_1, yl_2)
# a_1 = w_1 * h_1
a_2 = w_2 * h_2
a_inter = w_inter * h_inter
if w_inter <= 0 or h_inter <= 0:
a_inter = 0
return a_inter / a_2
def _compute_und_l(
self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64]
) -> float:
metrics, avali = 0.0, 0
for gold_label, prediction in zip(gold_labels, predictions):
und = 0
mask_deco = (gold_label == 3).reshape(-1)
mask_other = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1)
box_deco = prediction[mask_deco]
box_other = prediction[mask_other]
n1, n2 = len(box_deco), len(box_other)
if not n1:
continue
avali += 1
for i in range(n1):
max_ios = 0
bb1 = box_deco[i]
for j in range(n2):
bb2 = box_other[j]
ios = self.metrics_inter_oneside(bb1, bb2)
max_ios = max(max_ios, ios)
und += max_ios
metrics += und / n1
return metrics / avali if avali > 0 else 0.0
def _compute_und_s(
self, predictions: npt.NDArray[np.float64], gold_labels: npt.NDArray[np.int64]
) -> float:
def is_contain(bb1, bb2):
xl_1, yl_1, xr_1, yr_1 = bb1
xl_2, yl_2, xr_2, yr_2 = bb2
c1 = xl_1 <= xl_2
c2 = yl_1 <= yl_2
c3 = xr_2 >= xr_2
c4 = yr_1 >= yr_2
return c1 and c2 and c3 and c4
metrics, avali = 0.0, 0
for gold_label, prediction in zip(gold_labels, predictions):
und = 0
mask_deco = (gold_label == 3).reshape(-1)
mask_other = (gold_label > 0).reshape(-1) & (gold_label != 3).reshape(-1)
box_deco = prediction[mask_deco]
box_other = prediction[mask_other]
n1, n2 = len(box_deco), len(box_other)
if not n1:
continue
avali += 1
for i in range(n1):
bb1 = box_deco[i]
for j in range(n2):
bb2 = box_other[j]
if is_contain(bb1, bb2):
und += 1
break
metrics += und / n1
return metrics / avali if avali > 0 else 0.0
def _compute(
self,
*,
predictions: Union[npt.NDArray[np.float64], List[List[float]]],
gold_labels: Union[npt.NDArray[np.int64], List[int]],
) -> Dict[str, float]:
predictions = np.array(predictions)
gold_labels = np.array(gold_labels)
predictions[:, :, ::2] *= self.canvas_width
predictions[:, :, 1::2] *= self.canvas_height
gold_labels = self.get_rid_of_invalid(
predictions=predictions, gold_labels=gold_labels
)
return {
"und_l": self._compute_und_l(
predictions=predictions, gold_labels=gold_labels
),
"und_s": self._compute_und_s(
predictions=predictions, gold_labels=gold_labels
),
}
|