from .input_processing import parse_app_request, initialize_conversation, parse_prompt from .response_generation import generate_sim from .response_processing import process_model_response from streamlit.logger import get_logger logger = get_logger(__name__) def process_app_request(app_request: dict, endpoint_url: str, bearer_token: str) -> dict: """Process the app request and return the response in the required format.""" ############################# Input Processing ################################### # Parse the app request into model_input and extract the prompt model_input, prompt, conversation_id = parse_app_request(app_request) # Initialize the conversation (adds the system message) model_input = initialize_conversation(model_input, conversation_id) # Parse the prompt into messages prompt_messages = parse_prompt(prompt) # Append the messages parsed from the app prompt to the conversation history model_input['messages'].extend(prompt_messages) #################################################################################### ####################### Output Generation & Processing ############################# # Generate the assistant's response (texter's reply) completion = generate_sim(model_input, endpoint_url, bearer_token) # Process the raw model response (parse, guardrails, split) final_response = process_model_response(completion, model_input, endpoint_url, bearer_token) # Format the response for the APP response = {"predictions": [{"generated_text": final_response}]} #################################################################################### return response