File size: 9,358 Bytes
d3378e2
 
a4100ac
d3378e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4100ac
d3378e2
 
 
a4100ac
ae43eae
a4100ac
ae43eae
a4100ac
d3378e2
a4100ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3378e2
a4100ac
 
 
 
 
d3378e2
 
 
 
 
 
 
 
 
 
 
a4100ac
 
d3378e2
 
 
 
 
 
 
 
 
 
 
 
 
 
a4100ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Imports
import gradio as gr
import os
import matplotlib.pyplot as plt
import torch
import torchaudio
from torch import nn
import pytorch_lightning as pl
from ema_pytorch import EMA
import yaml
from audio_diffusion_pytorch import DiffusionModel, UNetV0, VDiffusion, VSampler


# Load configs
def load_configs(config_path):
    with open(config_path, 'r') as file:
        config = yaml.safe_load(file)
    pl_configs = config['model']
    model_configs = config['model']['model']
    return pl_configs, model_configs

# plot mel spectrogram
def plot_mel_spectrogram(sample, sr):
    transform = torchaudio.transforms.MelSpectrogram(
        sample_rate=sr,
        n_fft=1024,
        hop_length=512,
        n_mels=80,
        center=True,
        norm="slaney",
    )

    spectrogram = transform(torch.mean(sample, dim=0)) # downmix and cal spectrogram
    spectrogram = torchaudio.functional.amplitude_to_DB(spectrogram, 1.0, 1e-10, 80.0)

    # Plot the Mel spectrogram
    fig = plt.figure(figsize=(7, 4))
    plt.imshow(spectrogram, aspect='auto', origin='lower')
    plt.colorbar(format='%+2.0f dB')
    plt.xlabel('Frame')
    plt.ylabel('Mel Bin')
    plt.title('Mel Spectrogram')
    plt.tight_layout()
    
    return fig

# Define PyTorch Lightning model
class Model(pl.LightningModule):
    def __init__(
        self,
        lr: float,
        lr_beta1: float,
        lr_beta2: float,
        lr_eps: float,
        lr_weight_decay: float,
        ema_beta: float,
        ema_power: float,
        model: nn.Module,
    ):
        super().__init__()
        self.lr = lr
        self.lr_beta1 = lr_beta1
        self.lr_beta2 = lr_beta2
        self.lr_eps = lr_eps
        self.lr_weight_decay = lr_weight_decay
        self.model = model
        self.model_ema = EMA(self.model, beta=ema_beta, power=ema_power)

# Instantiate model (must match model that was trained)
def load_model(model_configs, pl_configs) -> nn.Module:
    # Diffusion model
    model = DiffusionModel(
        net_t=UNetV0, # The model type used for diffusion (U-Net V0 in this case)
        in_channels=model_configs['in_channels'], # U-Net: number of input/output (audio) channels
        channels=model_configs['channels'], # U-Net: channels at each layer
        factors=model_configs['factors'], # U-Net: downsampling and upsampling factors at each layer
        items=model_configs['items'], # U-Net: number of repeating items at each layer
        attentions=model_configs['attentions'], # U-Net: attention enabled/disabled at each layer
        attention_heads=model_configs['attention_heads'], # U-Net: number of attention heads per attention item
        attention_features=model_configs['attention_features'], # U-Net: number of attention features per attention item
        diffusion_t=VDiffusion, # The diffusion method used
        sampler_t=VSampler # The diffusion sampler used
    )

    # pl model
    model = Model(
        lr=pl_configs['lr'],
        lr_beta1=pl_configs['lr_beta1'],
        lr_beta2=pl_configs['lr_beta2'],
        lr_eps=pl_configs['lr_eps'],
        lr_weight_decay=pl_configs['lr_weight_decay'],
        ema_beta=pl_configs['ema_beta'],
        ema_power=pl_configs['ema_power'],
        model=model
    )

    return model

# Assign to GPU
def assign_to_gpu(model):
    if torch.cuda.is_available():
        model = model.to('cuda')
        print(f"Device: {model.device}")
    return model

# Load model checkpoint
def load_checkpoint(model, ckpt_path) -> None:
    checkpoint = torch.load(ckpt_path, map_location='cpu')['state_dict']
    model.load_state_dict(checkpoint) # should output "<All keys matched successfully>"


# Generate Samples
def generate_samples(model_name, num_samples, num_steps, init_audio=None, noise_level=0.7, duration=32768):
    # load_checkpoint
    ckpt_path = models[model_name]
    load_checkpoint(model, ckpt_path)
    
    if num_samples > 1:
        duration = int(duration / 2)

    # Generate samples
    with torch.no_grad():
        if init_audio:
            # load audio sample
            audio_sample = torch.tensor(init_audio[1].T, dtype=torch.float32).unsqueeze(0).to(model.device)
            audio_sample = audio_sample / torch.max(torch.abs(audio_sample)) # normalize init_audio

            # Trim audio
            og_shape = audio_sample.shape
            if duration < og_shape[2]:
                audio_sample = audio_sample[:,:,:duration]
            elif duration > og_shape[2]:
                # Pad tensor with zeros to match sample length
                audio_sample = torch.concat((audio_sample, torch.zeros(og_shape[0], og_shape[1], duration - og_shape[2]).to(model.device)), dim=2)

        else:
            audio_sample = torch.zeros((1, 2, int(duration)), device=model.device)
            noise_level = 1.0

        all_samples = torch.zeros(2, 0)
        for i in range(num_samples):
            noise = torch.randn_like(audio_sample, device=model.device) * noise_level # [batch_size, in_channels, length]
            audio = (audio_sample * abs(1-noise_level)) + noise # add noise

            # generate samples
            generated_sample = model.model_ema.ema_model.sample(audio, num_steps=num_steps).squeeze(0).cpu() # Suggested num_steps 10-100
            
            # concatenate all samples:
            all_samples = torch.concat((all_samples, generated_sample), dim=1)
            
            torch.cuda.empty_cache()
    
    fig = plot_mel_spectrogram(all_samples, sr)
    plt.title(f"{model_name} Mel Spectrogram")

    return (sr, all_samples.cpu().detach().numpy().T), fig # (sample rate, audio), plot


# Define Constants & initialize model
# load model & configs
sr = 44100 # sampling rate
config_path = "saved_models/config.yaml" # config path
pl_configs, model_configs = load_configs(config_path)
model = load_model(model_configs, pl_configs)
model = assign_to_gpu(model)

models = {
    "Kicks": "saved_models/kicks/kicks_v7.ckpt",
    "Snares": "saved_models/snares/snares_v0.ckpt",
    "Hi-hats": "saved_models/hihats/hihats_v2.ckpt",
    "Percussion": "saved_models/percussion/percussion_v0.ckpt"
}

intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 6px;">
    Tiny Audio Diffusion
</h1>
<h3 style="font-weight: 600; text-align: center;">
    Christopher Landschoot - Audio waveform diffusion built to run on consumer-grade hardware (<2GB VRAM)
</h3>
<h4 style="text-align: center; margin-bottom: 6px;">
    <a href="https://github.com/crlandsc/tiny-audio-diffusion" style="text-decoration: underline;" target="_blank">GitHub Repo</a> 
    | <a href="https://www.youtube.com/watch?v=m6Eh2srtTro&t=3s" style="text-decoration: underline;" target="_blank">Repo Tutorial Video</a> 
    | <a href="https://medium.com/towards-data-science/tiny-audio-diffusion-ddc19e90af9b" style="text-decoration: underline;" target="_blank">Towards Data Science Article</a>
</h4>
"""


with gr.Blocks() as demo:
    # Layout
    gr.HTML(intro)

    with gr.Row(equal_height=False):
        with gr.Column():
            # Inputs
            model_name = gr.Dropdown(choices=list(models.keys()), value=list(models.keys())[3], label="Model")
            num_samples = gr.Slider(1, 25, step=1, label="Number of Samples to Generate", value=3)
            num_steps = gr.Slider(1, 100, step=1, label="Number of Diffusion Steps", value=15)
            
            # Conditioning Audio Input
            with gr.Accordion("Input Audio (optional)", open=False):
                init_audio_description = gr.HTML('Upload an audio file to perform conditional "style transfer" diffusion.<br>Leaving input audio blank results in unconditional generation.')
                init_audio = gr.Audio(label="Input Audio Sample")
                init_audio_noise = gr.Slider(0, 1, step=0.01, label="Noise to add to input audio", value=0.70)#, visible=True)

                # Examples
                gr.Examples(
                    examples=[
                        os.path.join(os.path.dirname(__file__), "samples", "guitar.wav"),
                        os.path.join(os.path.dirname(__file__), "samples", "snare.wav"),
                        os.path.join(os.path.dirname(__file__), "samples", "kick.wav"),
                        os.path.join(os.path.dirname(__file__), "samples", "hihat.wav")
                    ],
                    inputs=init_audio,
                    label="Example Audio Inputs"
                )

            # Buttons
            with gr.Row():
                with gr.Column():
                    clear_button = gr.Button(value="Reset All")
                with gr.Column():
                    generate_btn = gr.Button("Generate Samples!")
            
        with gr.Column():
            # Outputs
            output_audio = gr.Audio(label="Generated Audio Sample")
            output_plot = gr.Plot(label="Generated Audio Spectrogram")
        
    # Functionality
    # Generate samples
    generate_btn.click(fn=generate_samples, inputs=[model_name, num_samples, num_steps, init_audio, init_audio_noise], outputs=[output_audio, output_plot])

    # clear_button button to reset everything
    clear_button.click(fn=lambda: [3, 15, None, 0.70, None, None], outputs=[num_samples, num_steps, init_audio, init_audio_noise, output_audio, output_plot])



if __name__ == "__main__":    
    demo.launch()