File size: 1,267 Bytes
8a0213d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from tensorflow.python.ops.numpy_ops import np_config
np_config.enable_numpy_behavior()
import os 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Conv3D, LSTM, Dense, Dropout, Bidirectional, MaxPool3D, Activation, Reshape, SpatialDropout3D, BatchNormalization, TimeDistributed, Flatten

def load_model() -> Sequential: 
    model = Sequential()

    model.add(Conv3D(128, 3, input_shape=(75,46,140,1), padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPool3D((1,2,2)))

    model.add(Conv3D(256, 3, padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPool3D((1,2,2)))

    model.add(Conv3D(75, 3, padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPool3D((1,2,2)))

    model.add(TimeDistributed(Flatten()))

    model.add(Bidirectional(LSTM(128, kernel_initializer='Orthogonal', return_sequences=True)))
    model.add(Dropout(.5))

    model.add(Bidirectional(LSTM(128, kernel_initializer='Orthogonal', return_sequences=True)))
    model.add(Dropout(.5))

    model.add(Dense(41, kernel_initializer='he_normal', activation='softmax'))
    # print("path",os.path.join('..','models','checkpoint'))
    model.load_weights(os.path.join('..','models','checkpoint'))

    return model