import tensorflow as tf import coremltools as ct import numpy as np import PIL from huggingface_hub import hf_hub_download from huggingface_hub import snapshot_download import os import math # Helper class to extract features from one model, and then feed those features into a classification head # Because coremltools will only perform inference on OSX, an alternative tensorflow inference pipeline uses # a tensorflow feature extractor and feeds the features into a dynamically created keras model based on the coreml classification head. class CoreMLPipeline: def __init__(self, config, auth_key, use_tf): self.config = config self.use_tf = use_tf if use_tf: extractor_path = snapshot_download(repo_id=config["tf_extractor_repoid"], use_auth_token = auth_key) else: extractor_path = hf_hub_download(repo_id=config["coreml_extractor_repoid"], filename=config["coreml_extractor_path"], use_auth_token = auth_key) classifier_path = hf_hub_download(repo_id=config["coreml_classifier_repoid"], filename=config["coreml_classifier_path"], use_auth_token = auth_key) print(f"Loading extractor...{extractor_path}") if use_tf: self.extractor = tf.saved_model.load(os.path.join(extractor_path, config["tf_extractor_path"])) else: self.extractor = ct.models.MLModel(extractor_path) print(f"Loading classifier...{classifier_path}") self.classifier = ct.models.MLModel(classifier_path) if use_tf: self.make_keras_model() #unquantizes values if quantized def realize_weights(self, nnWeights, width): if nnWeights.quantization == 0: weights = np.array(nnWeights.floatValue) elif nnWeights.quantization.numberOfBits == 8: scales = np.array(nnWeights.quantization.linearQuantization.scale) biases = np.array(nnWeights.quantization.linearQuantization.bias) quantized = nnWeights.rawValue classes = len(scales) weights = [] for i in range(0,classes): scale = scales[i] bias = biases[i] for j in range(0,width): weights.append(quantized[i*width + j] * scale + bias) weights = np.array(weights) else: print("Unsupported quantization") weights = None return weights #Only MacOS can run inference on CoreML models. Convert it to tensorflow to match the tf feature extractor def make_keras_model(self): spec = self.classifier.get_spec() nnClassifier = spec.neuralNetworkClassifier labels = nnClassifier.stringClassLabels.vector input = tf.keras.Input(shape = (1280)) if "activation" in self.config: activation = self.config['activation'] else: activation = "sigmoid" if len(labels) == 1 else "softmax" x = tf.keras.layers.Dense(len(labels), activation = activation)(input) model = tf.keras.Model(input,x, trainable = False) weights = self.realize_weights(nnClassifier.layers[0].innerProduct.weights,1280) weights = weights.reshape((len(labels),1280)) weights = weights.T bias = self.realize_weights(nnClassifier.layers[0].innerProduct.bias, len(labels)) bias.reshape(1,len(labels)) model.set_weights([weights,bias]) self.tf_model = model self.labels = labels import math def softmax_dict(self, input_dict): """ Compute the softmax of a dictionary of values. Args: input_dict (dict): A dictionary with numerical values. Returns: dict: A dictionary with the same keys where the values are the softmax of the input values. """ # Compute the exponential of all the values exp_values = {k: math.exp(v) for k, v in input_dict.items()} # Compute the sum of all exponential values sum_exp_values = sum(exp_values.values()) # Compute the softmax by dividing each exponential value by the sum of all exponential values softmax_values = {k: v / sum_exp_values for k, v in exp_values.items()} return softmax_values def classify(self,resized): if self.use_tf: image = tf.image.convert_image_dtype(resized, tf.float32) image = tf.expand_dims(image, 0) features = self.extractor.signatures['serving_default'](image) input = {"input_1":features["output_1"]} output = self.tf_model.predict(input) results = {} for i,label in enumerate(self.labels): results[label] = output[0][i] else: features = self.extractor.predict({"image":resized}) features = features["Identity"] output = self.classifier.predict({"features":features[0]}) results = output["Identity"] if "activation" in self.config and self.config["activation"] == "softmax": results = self.softmax_dict(results) return results