File size: 5,607 Bytes
66adac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import logging
import os
import shutil
import subprocess

import torch
from auto_gptq import AutoGPTQForCausalLM
from flask import Flask, jsonify, request
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings

# from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFacePipeline
from run_localGPT import load_model

# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    LlamaForCausalLM,
    LlamaTokenizer,
    pipeline,
)
from werkzeug.utils import secure_filename

from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME

DEVICE_TYPE = "cuda" if torch.cuda.is_available() else "cpu"
SHOW_SOURCES = True
logging.info(f"Running on: {DEVICE_TYPE}")
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")

EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})

# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
# EMBEDDINGS = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
if os.path.exists(PERSIST_DIRECTORY):
    try:
        shutil.rmtree(PERSIST_DIRECTORY)
    except OSError as e:
        print(f"Error: {e.filename} - {e.strerror}.")
else:
    print("The directory does not exist")

run_langest_commands = ["python", "ingest.py"]
if DEVICE_TYPE == "cpu":
    run_langest_commands.append("--device_type")
    run_langest_commands.append(DEVICE_TYPE)

result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
    raise FileNotFoundError(
        "No files were found inside SOURCE_DOCUMENTS, please put a starter file inside before starting the API!"
    )

# load the vectorstore
DB = Chroma(
    persist_directory=PERSIST_DIRECTORY,
    embedding_function=EMBEDDINGS,
    client_settings=CHROMA_SETTINGS,
)

RETRIEVER = DB.as_retriever()

LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)

QA = RetrievalQA.from_chain_type(
    llm=LLM, chain_type="stuff", retriever=RETRIEVER, return_source_documents=SHOW_SOURCES
)

app = Flask(__name__)


@app.route("/api/delete_source", methods=["GET"])
def delete_source_route():
    folder_name = "SOURCE_DOCUMENTS"

    if os.path.exists(folder_name):
        shutil.rmtree(folder_name)

    os.makedirs(folder_name)

    return jsonify({"message": f"Folder '{folder_name}' successfully deleted and recreated."})


@app.route("/api/save_document", methods=["GET", "POST"])
def save_document_route():
    if "document" not in request.files:
        return "No document part", 400
    file = request.files["document"]
    if file.filename == "":
        return "No selected file", 400
    if file:
        filename = secure_filename(file.filename)
        folder_path = "SOURCE_DOCUMENTS"
        if not os.path.exists(folder_path):
            os.makedirs(folder_path)
        file_path = os.path.join(folder_path, filename)
        file.save(file_path)
        return "File saved successfully", 200


@app.route("/api/run_ingest", methods=["GET"])
def run_ingest_route():
    global DB
    global RETRIEVER
    global QA
    try:
        if os.path.exists(PERSIST_DIRECTORY):
            try:
                shutil.rmtree(PERSIST_DIRECTORY)
            except OSError as e:
                print(f"Error: {e.filename} - {e.strerror}.")
        else:
            print("The directory does not exist")

        run_langest_commands = ["python", "ingest.py"]
        if DEVICE_TYPE == "cpu":
            run_langest_commands.append("--device_type")
            run_langest_commands.append(DEVICE_TYPE)
            
        result = subprocess.run(run_langest_commands, capture_output=True)
        if result.returncode != 0:
            return "Script execution failed: {}".format(result.stderr.decode("utf-8")), 500
        # load the vectorstore
        DB = Chroma(
            persist_directory=PERSIST_DIRECTORY,
            embedding_function=EMBEDDINGS,
            client_settings=CHROMA_SETTINGS,
        )
        RETRIEVER = DB.as_retriever()

        QA = RetrievalQA.from_chain_type(
            llm=LLM, chain_type="stuff", retriever=RETRIEVER, return_source_documents=SHOW_SOURCES
        )
        return "Script executed successfully: {}".format(result.stdout.decode("utf-8")), 200
    except Exception as e:
        return f"Error occurred: {str(e)}", 500


@app.route("/api/prompt_route", methods=["GET", "POST"])
def prompt_route():
    global QA
    user_prompt = request.form.get("user_prompt")
    if user_prompt:
        # print(f'User Prompt: {user_prompt}')
        # Get the answer from the chain
        res = QA(user_prompt)
        answer, docs = res["result"], res["source_documents"]

        prompt_response_dict = {
            "Prompt": user_prompt,
            "Answer": answer,
        }

        prompt_response_dict["Sources"] = []
        for document in docs:
            prompt_response_dict["Sources"].append(
                (os.path.basename(str(document.metadata["source"])), str(document.page_content))
            )

        return jsonify(prompt_response_dict), 200
    else:
        return "No user prompt received", 400


if __name__ == "__main__":
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
    )
    app.run(debug=False, port=5110)