Spaces:
Running
Running
Create functions.py
Browse files- functions.py +297 -0
functions.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List, Dict, Union, Optional
|
4 |
+
import re
|
5 |
+
import openai
|
6 |
+
import requests
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
+
from gradio_client import Client
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.INFO,
|
13 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
14 |
+
)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
18 |
+
"""
|
19 |
+
Extract text from a PDF file with robust error handling.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
file_path: Path to the PDF file
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
Extracted text as a string
|
26 |
+
|
27 |
+
Raises:
|
28 |
+
ValueError: If file doesn't exist or isn't readable
|
29 |
+
RuntimeError: If text extraction fails
|
30 |
+
"""
|
31 |
+
try:
|
32 |
+
if not Path(file_path).exists():
|
33 |
+
raise ValueError(f"PDF file not found: {file_path}")
|
34 |
+
|
35 |
+
reader = PdfReader(file_path)
|
36 |
+
text_content = []
|
37 |
+
|
38 |
+
for page_num, page in enumerate(reader.pages, 1):
|
39 |
+
try:
|
40 |
+
text = page.extract_text()
|
41 |
+
if text.strip():
|
42 |
+
text_content.append(text)
|
43 |
+
else:
|
44 |
+
logger.warning(f"Page {page_num} appears to be empty or unreadable")
|
45 |
+
except Exception as e:
|
46 |
+
logger.error(f"Error extracting text from page {page_num}: {str(e)}")
|
47 |
+
continue
|
48 |
+
|
49 |
+
if not text_content:
|
50 |
+
raise RuntimeError("No readable text found in PDF")
|
51 |
+
|
52 |
+
return "\n\n".join(text_content)
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
logger.error(f"PDF extraction failed: {str(e)}")
|
56 |
+
raise RuntimeError(f"Failed to process PDF: {str(e)}")
|
57 |
+
|
58 |
+
def format_content(text: str, format_type: str) -> str:
|
59 |
+
"""
|
60 |
+
Format extracted text into the specified output format.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
text: Raw text content
|
64 |
+
format_type: Output format ('txt', 'md', 'html')
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
Formatted text string
|
68 |
+
|
69 |
+
Raises:
|
70 |
+
ValueError: If format type is invalid
|
71 |
+
"""
|
72 |
+
if not isinstance(text, str):
|
73 |
+
raise ValueError("Input text must be a string")
|
74 |
+
|
75 |
+
# Clean up common PDF extraction artifacts
|
76 |
+
text = re.sub(r'\s+', ' ', text) # Normalize whitespace
|
77 |
+
text = re.sub(r'(?<=[.!?])\s+', '\n\n', text) # Split sentences into paragraphs
|
78 |
+
text = text.strip()
|
79 |
+
|
80 |
+
if format_type.lower() == 'txt':
|
81 |
+
return text
|
82 |
+
|
83 |
+
elif format_type.lower() == 'md':
|
84 |
+
paragraphs = text.split('\n\n')
|
85 |
+
md_text = []
|
86 |
+
|
87 |
+
for para in paragraphs:
|
88 |
+
# Detect and format headers
|
89 |
+
if re.match(r'^[A-Z][^.!?]*$', para.strip()):
|
90 |
+
md_text.append(f"## {para.strip()}")
|
91 |
+
else:
|
92 |
+
md_text.append(para.strip())
|
93 |
+
|
94 |
+
return '\n\n'.join(md_text)
|
95 |
+
|
96 |
+
elif format_type.lower() == 'html':
|
97 |
+
paragraphs = text.split('\n\n')
|
98 |
+
html_parts = ['<!DOCTYPE html>', '<html>', '<body>']
|
99 |
+
|
100 |
+
for para in paragraphs:
|
101 |
+
if re.match(r'^[A-Z][^.!?]*$', para.strip()):
|
102 |
+
html_parts.append(f"<h2>{para.strip()}</h2>")
|
103 |
+
else:
|
104 |
+
html_parts.append(f"<p>{para.strip()}</p>")
|
105 |
+
|
106 |
+
html_parts.extend(['</body>', '</html>'])
|
107 |
+
return '\n'.join(html_parts)
|
108 |
+
|
109 |
+
else:
|
110 |
+
raise ValueError(f"Unsupported format type: {format_type}")
|
111 |
+
|
112 |
+
def split_into_snippets(text: str, chunk_size: int = 4000, overlap: int = 200) -> List[str]:
|
113 |
+
"""
|
114 |
+
Split text into overlapping chunks that fit within model context windows.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
text: Input text to split
|
118 |
+
chunk_size: Maximum size of each chunk
|
119 |
+
overlap: Number of characters to overlap between chunks
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
List of text snippets
|
123 |
+
|
124 |
+
Raises:
|
125 |
+
ValueError: If chunk_size is too small or text is empty
|
126 |
+
"""
|
127 |
+
if not text:
|
128 |
+
raise ValueError("Input text is empty")
|
129 |
+
|
130 |
+
if chunk_size < 1000:
|
131 |
+
raise ValueError("Chunk size must be at least 1000 characters")
|
132 |
+
|
133 |
+
# Split into paragraphs first
|
134 |
+
paragraphs = text.split('\n\n')
|
135 |
+
chunks = []
|
136 |
+
current_chunk = []
|
137 |
+
current_size = 0
|
138 |
+
|
139 |
+
for para in paragraphs:
|
140 |
+
para_size = len(para)
|
141 |
+
|
142 |
+
if current_size + para_size <= chunk_size:
|
143 |
+
current_chunk.append(para)
|
144 |
+
current_size += para_size + 2 # +2 for newlines
|
145 |
+
else:
|
146 |
+
if current_chunk:
|
147 |
+
chunks.append('\n\n'.join(current_chunk))
|
148 |
+
|
149 |
+
# Start new chunk with overlap
|
150 |
+
if chunks:
|
151 |
+
overlap_text = chunks[-1][-overlap:] if overlap > 0 else ""
|
152 |
+
current_chunk = [overlap_text, para]
|
153 |
+
current_size = len(overlap_text) + para_size + 2
|
154 |
+
else:
|
155 |
+
current_chunk = [para]
|
156 |
+
current_size = para_size
|
157 |
+
|
158 |
+
# Add the last chunk if it exists
|
159 |
+
if current_chunk:
|
160 |
+
chunks.append('\n\n'.join(current_chunk))
|
161 |
+
|
162 |
+
return chunks
|
163 |
+
|
164 |
+
def build_prompts(chunks: List[str], custom_prompt: Optional[str] = None) -> List[str]:
|
165 |
+
"""
|
166 |
+
Build formatted prompts for each text chunk.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
chunks: List of text chunks
|
170 |
+
custom_prompt: Optional custom instruction
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
List of formatted prompt strings
|
174 |
+
"""
|
175 |
+
default_prompt = """Please analyze and summarize the following text. Focus on:
|
176 |
+
1. Key points and main ideas
|
177 |
+
2. Important details and supporting evidence
|
178 |
+
3. Any conclusions or recommendations
|
179 |
+
|
180 |
+
Please maintain the original meaning while being concise."""
|
181 |
+
|
182 |
+
instruction = custom_prompt if custom_prompt else default_prompt
|
183 |
+
prompts = []
|
184 |
+
|
185 |
+
for i, chunk in enumerate(chunks, 1):
|
186 |
+
prompt = f"""### Instruction
|
187 |
+
{instruction}
|
188 |
+
|
189 |
+
### Input Text (Part {i} of {len(chunks)})
|
190 |
+
{chunk}
|
191 |
+
|
192 |
+
### End of Input Text
|
193 |
+
|
194 |
+
Please provide your summary below:"""
|
195 |
+
prompts.append(prompt)
|
196 |
+
|
197 |
+
return prompts
|
198 |
+
|
199 |
+
def process_with_model(
|
200 |
+
prompt: str,
|
201 |
+
model_choice: str,
|
202 |
+
api_key: Optional[str] = None,
|
203 |
+
oauth_token: Optional[str] = None
|
204 |
+
) -> str:
|
205 |
+
"""
|
206 |
+
Process text with selected model.
|
207 |
+
|
208 |
+
Args:
|
209 |
+
prompt: Input prompt
|
210 |
+
model_choice: Selected model name
|
211 |
+
api_key: OpenAI API key for GPT models
|
212 |
+
oauth_token: Hugging Face token for other models
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
Generated summary
|
216 |
+
|
217 |
+
Raises:
|
218 |
+
ValueError: If required credentials are missing
|
219 |
+
RuntimeError: If model processing fails
|
220 |
+
"""
|
221 |
+
try:
|
222 |
+
if 'gpt' in model_choice.lower():
|
223 |
+
if not api_key:
|
224 |
+
raise ValueError("OpenAI API key required for GPT models")
|
225 |
+
|
226 |
+
openai.api_key = api_key
|
227 |
+
response = openai.ChatCompletion.create(
|
228 |
+
model="gpt-3.5-turbo" if "3.5" in model_choice else "gpt-4",
|
229 |
+
messages=[{"role": "user", "content": prompt}],
|
230 |
+
temperature=0.7,
|
231 |
+
max_tokens=1500
|
232 |
+
)
|
233 |
+
return response.choices[0].message.content
|
234 |
+
|
235 |
+
else: # Hugging Face models
|
236 |
+
if not oauth_token:
|
237 |
+
raise ValueError("Hugging Face token required")
|
238 |
+
|
239 |
+
headers = {"Authorization": f"Bearer {oauth_token}"}
|
240 |
+
|
241 |
+
# Map model choice to actual model ID
|
242 |
+
model_map = {
|
243 |
+
"Claude-3": "anthropic/claude-3-opus-20240229",
|
244 |
+
"Mistral": "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
245 |
+
}
|
246 |
+
|
247 |
+
model_id = model_map.get(model_choice)
|
248 |
+
if not model_id:
|
249 |
+
raise ValueError(f"Unknown model: {model_choice}")
|
250 |
+
|
251 |
+
response = requests.post(
|
252 |
+
f"https://api-inference.huggingface.co/models/{model_id}",
|
253 |
+
headers=headers,
|
254 |
+
json={"inputs": prompt}
|
255 |
+
)
|
256 |
+
|
257 |
+
if response.status_code != 200:
|
258 |
+
raise RuntimeError(f"Model API error: {response.text}")
|
259 |
+
|
260 |
+
return response.json()[0]["generated_text"]
|
261 |
+
|
262 |
+
except Exception as e:
|
263 |
+
logger.error(f"Model processing failed: {str(e)}")
|
264 |
+
raise RuntimeError(f"Failed to process with model: {str(e)}")
|
265 |
+
|
266 |
+
def validate_api_keys(openai_key: Optional[str] = None, hf_token: Optional[str] = None) -> Dict[str, bool]:
|
267 |
+
"""
|
268 |
+
Validate API keys for different services.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
openai_key: OpenAI API key
|
272 |
+
hf_token: Hugging Face token
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
Dictionary with validation results
|
276 |
+
"""
|
277 |
+
results = {"openai": False, "huggingface": False}
|
278 |
+
|
279 |
+
if openai_key:
|
280 |
+
try:
|
281 |
+
openai.api_key = openai_key
|
282 |
+
openai.Model.list()
|
283 |
+
results["openai"] = True
|
284 |
+
except:
|
285 |
+
pass
|
286 |
+
|
287 |
+
if hf_token:
|
288 |
+
try:
|
289 |
+
response = requests.get(
|
290 |
+
"https://huggingface.co/api/models",
|
291 |
+
headers={"Authorization": f"Bearer {hf_token}"}
|
292 |
+
)
|
293 |
+
results["huggingface"] = response.status_code == 200
|
294 |
+
except:
|
295 |
+
pass
|
296 |
+
|
297 |
+
return results
|