Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -31,13 +31,19 @@ class ModelRegistry:
|
|
31 |
self.groq_models = self._fetch_groq_models()
|
32 |
|
33 |
def _fetch_groq_models(self) -> Dict[str, str]:
|
34 |
-
"""Fetch available Groq models"""
|
35 |
try:
|
|
|
|
|
|
|
|
|
|
|
36 |
headers = {
|
37 |
-
"Authorization": f"Bearer {
|
38 |
"Content-Type": "application/json"
|
39 |
}
|
40 |
response = requests.get("https://api.groq.com/openai/v1/models", headers=headers)
|
|
|
41 |
if response.status_code == 200:
|
42 |
models = response.json().get("data", [])
|
43 |
return {model["id"]: model["id"] for model in models}
|
@@ -142,6 +148,38 @@ def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: O
|
|
142 |
|
143 |
return "\n\n".join(prompts)
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
def send_to_hf_inference(prompt: str, model_name: str, api_key: str) -> str:
|
146 |
"""Send prompt to HuggingFace using Inference API"""
|
147 |
try:
|
@@ -179,26 +217,27 @@ def send_to_groq(prompt: str, model_name: str, api_key: str) -> str:
|
|
179 |
return f"Error with Groq API: {e}"
|
180 |
|
181 |
def copy_to_clipboard(text: str) -> str:
|
182 |
-
"""Copy text to clipboard"""
|
183 |
-
return "
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
194 |
try:
|
195 |
if not pdf:
|
196 |
-
return "Please upload a PDF file.", "",
|
197 |
|
198 |
# Extract text
|
199 |
text = extract_text_from_pdf(pdf.name)
|
200 |
if text.startswith("Error"):
|
201 |
-
return text, "",
|
202 |
|
203 |
# Format content
|
204 |
formatted_text = format_content(text, fmt)
|
@@ -211,42 +250,17 @@ def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection,
|
|
211 |
full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num)
|
212 |
|
213 |
if isinstance(full_prompt, str) and full_prompt.startswith("Error"):
|
214 |
-
return full_prompt, "",
|
215 |
-
|
216 |
-
# Process with selected model
|
217 |
-
if model_selection == "HuggingFace Inference":
|
218 |
-
if not hf_api_key:
|
219 |
-
return "HuggingFace API key required.", full_prompt, "", []
|
220 |
-
|
221 |
-
model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice]
|
222 |
-
summary = send_to_hf_inference(full_prompt, model_id, hf_api_key)
|
223 |
-
|
224 |
-
elif model_selection == "Groq API":
|
225 |
-
if not groq_api_key:
|
226 |
-
return "Groq API key required.", full_prompt, "", []
|
227 |
-
|
228 |
-
summary = send_to_groq(full_prompt, groq_model_choice, groq_api_key)
|
229 |
-
|
230 |
-
else: # OpenAI ChatGPT
|
231 |
-
summary = "Please use the Copy Prompt button and paste into ChatGPT."
|
232 |
-
|
233 |
-
# Save files for download
|
234 |
-
files_to_download = []
|
235 |
|
|
|
236 |
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
237 |
prompt_file.write(full_prompt)
|
238 |
-
files_to_download.append(prompt_file.name)
|
239 |
-
|
240 |
-
if summary != "Please use the Copy Prompt button and paste into ChatGPT.":
|
241 |
-
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
242 |
-
summary_file.write(summary)
|
243 |
-
files_to_download.append(summary_file.name)
|
244 |
|
245 |
-
return "
|
246 |
|
247 |
except Exception as e:
|
248 |
logging.error(f"Error processing PDF: {e}")
|
249 |
-
return f"Error processing PDF: {str(e)}", "",
|
250 |
|
251 |
# Main Interface
|
252 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
@@ -273,12 +287,18 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
273 |
label="π Output Format"
|
274 |
)
|
275 |
|
276 |
-
gr.Markdown("### Context
|
277 |
with gr.Row():
|
278 |
-
context_buttons = []
|
279 |
for size_name, size_value in CONTEXT_SIZES.items():
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
context_size = gr.Slider(
|
284 |
minimum=1000,
|
@@ -334,6 +354,13 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
334 |
type="password"
|
335 |
)
|
336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
# Right Column - Output
|
338 |
with gr.Column(scale=1):
|
339 |
process_button = gr.Button("π Process PDF", variant="primary")
|
@@ -370,7 +397,8 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
370 |
def toggle_model_options(choice):
|
371 |
return (
|
372 |
gr.update(visible=choice == "HuggingFace Inference"),
|
373 |
-
gr.update(visible=choice == "Groq API")
|
|
|
374 |
)
|
375 |
|
376 |
def refresh_groq_models_list():
|
@@ -384,7 +412,7 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
384 |
model_choice.change(
|
385 |
toggle_model_options,
|
386 |
inputs=[model_choice],
|
387 |
-
outputs=[hf_options, groq_options]
|
388 |
)
|
389 |
|
390 |
for btn, size_value in context_buttons:
|
@@ -412,17 +440,30 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
412 |
format_type,
|
413 |
context_size,
|
414 |
snippet_number,
|
415 |
-
custom_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
model_choice,
|
417 |
hf_model,
|
418 |
hf_custom_model,
|
419 |
hf_api_key,
|
420 |
groq_model,
|
421 |
-
groq_api_key
|
|
|
422 |
],
|
423 |
outputs=[
|
424 |
-
progress_status,
|
425 |
-
generated_prompt,
|
426 |
summary_output,
|
427 |
download_files
|
428 |
]
|
@@ -451,22 +492,13 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
451 |
1. Upload a PDF document
|
452 |
2. Choose output format and context window size
|
453 |
3. Select snippet number (default: 1) or enter custom prompt
|
454 |
-
4. Select your preferred model:
|
455 |
- OpenAI ChatGPT: Manual copy/paste workflow
|
456 |
- HuggingFace Inference: Direct API integration
|
457 |
- Groq API: High-performance inference
|
458 |
5. Click 'Process PDF' to generate summary
|
459 |
-
6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing
|
460 |
7. Download generated files as needed
|
461 |
-
|
462 |
-
### βοΈ Features:
|
463 |
-
- Support for multiple PDF formats
|
464 |
-
- Flexible text formatting options
|
465 |
-
- Predefined context window sizes (4K to 200K)
|
466 |
-
- Multiple model integrations
|
467 |
-
- Copy to clipboard functionality
|
468 |
-
- Direct ChatGPT integration
|
469 |
-
- Downloadable outputs
|
470 |
""")
|
471 |
|
472 |
# Launch the interface
|
|
|
31 |
self.groq_models = self._fetch_groq_models()
|
32 |
|
33 |
def _fetch_groq_models(self) -> Dict[str, str]:
|
34 |
+
"""Fetch available Groq models with proper error handling"""
|
35 |
try:
|
36 |
+
groq_api_key = os.getenv('GROQ_API_KEY')
|
37 |
+
if not groq_api_key:
|
38 |
+
logging.warning("No GROQ_API_KEY found in environment")
|
39 |
+
return self._get_default_groq_models()
|
40 |
+
|
41 |
headers = {
|
42 |
+
"Authorization": f"Bearer {groq_api_key}",
|
43 |
"Content-Type": "application/json"
|
44 |
}
|
45 |
response = requests.get("https://api.groq.com/openai/v1/models", headers=headers)
|
46 |
+
|
47 |
if response.status_code == 200:
|
48 |
models = response.json().get("data", [])
|
49 |
return {model["id"]: model["id"] for model in models}
|
|
|
148 |
|
149 |
return "\n\n".join(prompts)
|
150 |
|
151 |
+
def send_to_model(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key,
|
152 |
+
groq_model_choice, groq_api_key, openai_api_key):
|
153 |
+
"""Send prompt to selected model"""
|
154 |
+
try:
|
155 |
+
if model_selection == "HuggingFace Inference":
|
156 |
+
if not hf_api_key:
|
157 |
+
return "HuggingFace API key required.", []
|
158 |
+
|
159 |
+
model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice]
|
160 |
+
summary = send_to_hf_inference(prompt, model_id, hf_api_key)
|
161 |
+
|
162 |
+
elif model_selection == "Groq API":
|
163 |
+
if not groq_api_key:
|
164 |
+
return "Groq API key required.", []
|
165 |
+
|
166 |
+
summary = send_to_groq(prompt, groq_model_choice, groq_api_key)
|
167 |
+
|
168 |
+
elif model_selection == "OpenAI ChatGPT":
|
169 |
+
if not openai_api_key:
|
170 |
+
return "OpenAI API key required.", []
|
171 |
+
# Implement OpenAI API call here
|
172 |
+
|
173 |
+
# Save summary for download
|
174 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
175 |
+
summary_file.write(summary)
|
176 |
+
|
177 |
+
return summary, [summary_file.name]
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
logging.error(f"Error sending to model: {e}")
|
181 |
+
return f"Error sending to model: {str(e)}", []
|
182 |
+
|
183 |
def send_to_hf_inference(prompt: str, model_name: str, api_key: str) -> str:
|
184 |
"""Send prompt to HuggingFace using Inference API"""
|
185 |
try:
|
|
|
217 |
return f"Error with Groq API: {e}"
|
218 |
|
219 |
def copy_to_clipboard(text: str) -> str:
|
220 |
+
"""Copy text to clipboard using JavaScript"""
|
221 |
+
return """
|
222 |
+
navigator.clipboard.writeText(text)
|
223 |
+
.then(() => gradioApp().querySelector('#progress_status').value = 'Copied to clipboard!')
|
224 |
+
.catch(() => gradioApp().querySelector('#progress_status').value = 'Failed to copy');
|
225 |
+
"""
|
226 |
+
|
227 |
+
def open_chatgpt() -> None:
|
228 |
+
"""Open ChatGPT in new browser tab"""
|
229 |
+
return """window.open('https://chat.openai.com/', '_blank');"""
|
230 |
+
|
231 |
+
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt):
|
232 |
+
"""Generate prompt from PDF without model processing"""
|
233 |
try:
|
234 |
if not pdf:
|
235 |
+
return "Please upload a PDF file.", "", []
|
236 |
|
237 |
# Extract text
|
238 |
text = extract_text_from_pdf(pdf.name)
|
239 |
if text.startswith("Error"):
|
240 |
+
return text, "", []
|
241 |
|
242 |
# Format content
|
243 |
formatted_text = format_content(text, fmt)
|
|
|
250 |
full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num)
|
251 |
|
252 |
if isinstance(full_prompt, str) and full_prompt.startswith("Error"):
|
253 |
+
return full_prompt, "", []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
# Save prompt for download
|
256 |
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
257 |
prompt_file.write(full_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
return "Prompt generated!", full_prompt, [prompt_file.name]
|
260 |
|
261 |
except Exception as e:
|
262 |
logging.error(f"Error processing PDF: {e}")
|
263 |
+
return f"Error processing PDF: {str(e)}", "", []
|
264 |
|
265 |
# Main Interface
|
266 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
|
287 |
label="π Output Format"
|
288 |
)
|
289 |
|
290 |
+
gr.Markdown("### Context Size")
|
291 |
with gr.Row():
|
|
|
292 |
for size_name, size_value in CONTEXT_SIZES.items():
|
293 |
+
gr.Button(
|
294 |
+
size_name,
|
295 |
+
size="sm", # Make buttons smaller
|
296 |
+
scale=1 # Equal scaling
|
297 |
+
).click(
|
298 |
+
lambda v=size_value: v,
|
299 |
+
None,
|
300 |
+
context_size
|
301 |
+
)
|
302 |
|
303 |
context_size = gr.Slider(
|
304 |
minimum=1000,
|
|
|
354 |
type="password"
|
355 |
)
|
356 |
|
357 |
+
# In the UI section, add OpenAI API key input:
|
358 |
+
with gr.Column(visible=False) as openai_options:
|
359 |
+
openai_api_key = gr.Textbox(
|
360 |
+
label="π OpenAI API Key",
|
361 |
+
type="password"
|
362 |
+
)
|
363 |
+
|
364 |
# Right Column - Output
|
365 |
with gr.Column(scale=1):
|
366 |
process_button = gr.Button("π Process PDF", variant="primary")
|
|
|
397 |
def toggle_model_options(choice):
|
398 |
return (
|
399 |
gr.update(visible=choice == "HuggingFace Inference"),
|
400 |
+
gr.update(visible=choice == "Groq API"),
|
401 |
+
gr.update(visible=choice == "OpenAI ChatGPT")
|
402 |
)
|
403 |
|
404 |
def refresh_groq_models_list():
|
|
|
412 |
model_choice.change(
|
413 |
toggle_model_options,
|
414 |
inputs=[model_choice],
|
415 |
+
outputs=[hf_options, groq_options, openai_options]
|
416 |
)
|
417 |
|
418 |
for btn, size_value in context_buttons:
|
|
|
440 |
format_type,
|
441 |
context_size,
|
442 |
snippet_number,
|
443 |
+
custom_prompt
|
444 |
+
],
|
445 |
+
outputs=[
|
446 |
+
progress_status,
|
447 |
+
generated_prompt,
|
448 |
+
download_files
|
449 |
+
]
|
450 |
+
)
|
451 |
+
|
452 |
+
# Add a new button for sending to model
|
453 |
+
send_button = gr.Button("π Send to Model", variant="primary")
|
454 |
+
send_button.click(
|
455 |
+
send_to_model,
|
456 |
+
inputs=[
|
457 |
+
generated_prompt,
|
458 |
model_choice,
|
459 |
hf_model,
|
460 |
hf_custom_model,
|
461 |
hf_api_key,
|
462 |
groq_model,
|
463 |
+
groq_api_key,
|
464 |
+
openai_api_key
|
465 |
],
|
466 |
outputs=[
|
|
|
|
|
467 |
summary_output,
|
468 |
download_files
|
469 |
]
|
|
|
492 |
1. Upload a PDF document
|
493 |
2. Choose output format and context window size
|
494 |
3. Select snippet number (default: 1) or enter custom prompt
|
495 |
+
4. Select your preferred model in case you want to proceed directly (or continue with 5):
|
496 |
- OpenAI ChatGPT: Manual copy/paste workflow
|
497 |
- HuggingFace Inference: Direct API integration
|
498 |
- Groq API: High-performance inference
|
499 |
5. Click 'Process PDF' to generate summary
|
500 |
+
6. Use 'Copy Prompt' and, optionally, 'Open ChatGPT' for manual processing
|
501 |
7. Download generated files as needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
""")
|
503 |
|
504 |
# Launch the interface
|