cstr's picture
Update app.py
ea9c79a verified
import gradio as gr
import os
import time
import sys
import io
import tempfile
import subprocess
import requests
from urllib.parse import urlparse
from pydub import AudioSegment
import logging
import torch
import importlib
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import yt_dlp
print(f"Current yt-dlp version: {yt_dlp.version.__version__}")
class LogCapture(io.StringIO):
def __init__(self, callback):
super().__init__()
self.callback = callback
def write(self, s):
super().write(s)
self.callback(s)
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Clone and install faster-whisper from GitHub
try:
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
except subprocess.CalledProcessError as e:
logging.error(f"Error during faster-whisper installation: {e}")
sys.exit(1)
sys.path.append("./faster-whisper")
from faster_whisper import WhisperModel
from faster_whisper.transcribe import BatchedInferencePipeline
# Check for CUDA availability
device = "cuda:0" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {device}")
def download_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
"""
Downloads audio from a given URL using the specified method and proxy settings.
Args:
url (str): The URL of the audio.
method_choice (str): The method to use for downloading audio.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
tuple: (path to the downloaded audio file, is_temp_file), or (None, False) if failed.
"""
parsed_url = urlparse(url)
logging.info(f"Downloading audio from URL: {url} using method: {method_choice}")
try:
if 'youtube.com' in parsed_url.netloc or 'youtu.be' in parsed_url.netloc:
audio_file = download_youtube_audio(url, method_choice, proxy_url, proxy_username, proxy_password)
if not audio_file:
error_msg = f"Failed to download audio from {url} using method {method_choice}. Ensure yt-dlp is up to date."
logging.error(error_msg)
return None, False
elif parsed_url.scheme == 'rtsp':
audio_file = download_rtsp_audio(url, proxy_url)
if not audio_file:
error_msg = f"Failed to download RTSP audio from {url}"
logging.error(error_msg)
return None, False
else:
audio_file = download_direct_audio(url, method_choice, proxy_url, proxy_username, proxy_password)
if not audio_file:
error_msg = f"Failed to download audio from {url} using method {method_choice}"
logging.error(error_msg)
return None, False
return audio_file, True
except Exception as e:
error_msg = f"Error downloading audio from {url} using method {method_choice}: {str(e)}"
logging.error(error_msg)
return None, False
def download_youtube_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
"""
Downloads audio from a YouTube URL using the specified method.
Args:
url (str): The YouTube URL.
method_choice (str): The method to use for downloading.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
methods = {
'yt-dlp': yt_dlp_method,
'pytube': pytube_method,
}
method = methods.get(method_choice, yt_dlp_method)
try:
logging.info(f"Attempting to download YouTube audio using {method_choice}")
return method(url, proxy_url, proxy_username, proxy_password)
except Exception as e:
logging.error(f"Error downloading using {method_choice}: {str(e)}")
return None
def yt_dlp_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads YouTube audio using yt-dlp and saves it to a temporary file.
Args:
url (str): The YouTube URL.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info(f"Using yt-dlp {yt_dlp.version.version} method")
temp_dir = tempfile.mkdtemp()
output_template = os.path.join(temp_dir, '%(id)s.%(ext)s')
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': output_template,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'quiet': False,
'no_warnings': False,
'logger': MyLogger(), # Use a custom logger to capture yt-dlp logs
'progress_hooks': [my_hook], # Hook to capture download progress and errors
}
if proxy_url and len(proxy_url.strip()) > 0:
ydl_opts['proxy'] = proxy_url
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
if 'entries' in info:
# Can be a playlist or a list of videos
info = info['entries'][0]
output_file = ydl.prepare_filename(info)
output_file = os.path.splitext(output_file)[0] + '.mp3'
if os.path.exists(output_file):
logging.info(f"Downloaded YouTube audio: {output_file}")
return output_file
else:
error_msg = "yt-dlp did not produce an output file."
logging.error(error_msg)
return None
except Exception as e:
logging.error(f"yt-dlp failed to download audio: {str(e)}")
return None
class MyLogger(object):
"""
Custom logger for yt-dlp to capture logs and errors.
"""
def debug(self, msg):
logging.debug(msg)
def info(self, msg):
logging.info(msg)
def warning(self, msg):
logging.warning(msg)
def error(self, msg):
logging.error(msg)
def my_hook(d):
"""
Hook function to capture yt-dlp download progress and errors.
"""
if d['status'] == 'finished':
logging.info('Download finished, now converting...')
elif d['status'] == 'error':
logging.error(f"Download error: {d['filename']}")
def pytube_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio from a YouTube URL using pytube and saves it to a temporary file.
Args:
url (str): The YouTube URL.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using pytube method")
from pytube import YouTube
try:
proxies = None
if proxy_url and len(proxy_url.strip()) > 0:
proxies = {
"http": proxy_url,
"https": proxy_url
}
yt = YouTube(url, proxies=proxies)
audio_stream = yt.streams.filter(only_audio=True).first()
if audio_stream is None:
error_msg = "No audio streams available with pytube."
logging.error(error_msg)
return None
temp_dir = tempfile.mkdtemp()
out_file = audio_stream.download(output_path=temp_dir)
base, ext = os.path.splitext(out_file)
new_file = base + '.mp3'
os.rename(out_file, new_file)
logging.info(f"Downloaded and converted audio to: {new_file}")
return new_file
except Exception as e:
logging.error(f"pytube failed to download audio: {str(e)}")
return None
def download_rtsp_audio(url, proxy_url):
"""
Downloads audio from an RTSP URL using FFmpeg.
Args:
url (str): The RTSP URL.
proxy_url (str): Proxy URL if needed.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using FFmpeg to download RTSP stream")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-acodec', 'libmp3lame', '-ab', '192k', '-y', output_file]
env = os.environ.copy()
if proxy_url and len(proxy_url.strip()) > 0:
env['http_proxy'] = proxy_url
env['https_proxy'] = proxy_url
try:
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)
logging.info(f"Downloaded RTSP audio to: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg error: {e.stderr.decode()}")
return None
except Exception as e:
logging.error(f"Error downloading RTSP audio: {str(e)}")
return None
def download_direct_audio(url, method_choice, proxy_url, proxy_username, proxy_password):
"""
Downloads audio from a direct URL using the specified method.
Args:
url (str): The direct URL of the audio file.
method_choice (str): The method to use for downloading.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
methods = {
'wget': wget_method,
'requests': requests_method,
'yt-dlp': yt_dlp_direct_method,
'ffmpeg': ffmpeg_method,
'aria2': aria2_method,
}
method = methods.get(method_choice, requests_method)
try:
audio_file = method(url, proxy_url, proxy_username, proxy_password)
if not audio_file or not os.path.exists(audio_file):
error_msg = f"Failed to download direct audio from {url} using method {method_choice}"
logging.error(error_msg)
return None
return audio_file
except Exception as e:
logging.error(f"Error downloading direct audio with {method_choice}: {str(e)}")
return None
def requests_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using the requests library.
Args:
url (str): The URL of the audio file.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
try:
proxies = None
auth = None
if proxy_url and len(proxy_url.strip()) > 0:
proxies = {
"http": proxy_url,
"https": proxy_url
}
if proxy_username and proxy_password:
auth = (proxy_username, proxy_password)
response = requests.get(url, stream=True, proxies=proxies, auth=auth)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
temp_file.write(chunk)
logging.info(f"Downloaded direct audio to: {temp_file.name}")
return temp_file.name
else:
logging.error(f"Failed to download audio from {url} with status code {response.status_code}")
return None
except Exception as e:
logging.error(f"Error in requests_method: {str(e)}")
return None
def wget_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using the wget command-line tool.
Args:
url (str): The URL of the audio file.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using wget method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['wget', '-O', output_file, url]
env = os.environ.copy()
if proxy_url and len(proxy_url.strip()) > 0:
env['http_proxy'] = proxy_url
env['https_proxy'] = proxy_url
try:
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env)
logging.info(f"Downloaded audio to: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logging.error(f"Wget error: {e.stderr.decode()}")
return None
except Exception as e:
logging.error(f"Error in wget_method: {str(e)}")
return None
def yt_dlp_direct_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using yt-dlp (supports various protocols and sites).
Args:
url (str): The URL of the audio or webpage containing audio.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using yt-dlp direct method")
output_file = tempfile.mktemp(suffix='.mp3')
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': output_file,
'quiet': True,
'no_warnings': True,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
}
if proxy_url and len(proxy_url.strip()) > 0:
ydl_opts['proxy'] = proxy_url
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
logging.info(f"Downloaded audio to: {output_file}")
return output_file
except Exception as e:
logging.error(f"Error in yt_dlp_direct_method: {str(e)}")
return None
def ffmpeg_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using FFmpeg.
Args:
url (str): The URL of the audio file.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using ffmpeg method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
env = os.environ.copy()
if proxy_url and len(proxy_url.strip()) > 0:
env['http_proxy'] = proxy_url
env['https_proxy'] = proxy_url
try:
subprocess.run(command, check=True, capture_output=True, text=True, env=env)
logging.info(f"Downloaded and converted audio to: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg error: {e.stderr}")
return None
except Exception as e:
logging.error(f"Error in ffmpeg_method: {str(e)}")
return None
def aria2_method(url, proxy_url, proxy_username, proxy_password):
"""
Downloads audio using aria2.
Args:
url (str): The URL of the audio file.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using aria2 method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
if proxy_url and len(proxy_url.strip()) > 0:
command.extend(['--all-proxy', proxy_url])
try:
subprocess.run(command, check=True, capture_output=True, text=True)
logging.info(f"Downloaded audio to: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logging.error(f"Aria2 error: {e.stderr}")
return None
except Exception as e:
logging.error(f"Error in aria2_method: {str(e)}")
return None
def trim_audio(audio_path, start_time, end_time):
"""
Trims an audio file to the specified start and end times.
Args:
audio_path (str): Path to the audio file.
start_time (float): Start time in seconds.
end_time (float): End time in seconds.
Returns:
str: Path to the trimmed audio file.
Raises:
gr.Error: If invalid start or end times are provided.
"""
try:
logging.info(f"Trimming audio from {start_time} to {end_time}")
audio = AudioSegment.from_file(audio_path)
audio_duration = len(audio) / 1000 # Duration in seconds
# Default start and end times if None
start_time = max(0, start_time) if start_time is not None else 0
end_time = min(audio_duration, end_time) if end_time is not None else audio_duration
# Validate times
if start_time >= end_time:
raise gr.Error("End time must be greater than start time.")
trimmed_audio = audio[int(start_time * 1000):int(end_time * 1000)]
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio_file:
trimmed_audio.export(temp_audio_file.name, format="wav")
logging.info(f"Trimmed audio saved to: {temp_audio_file.name}")
return temp_audio_file.name
except Exception as e:
logging.error(f"Error trimming audio: {str(e)}")
raise gr.Error(f"Error trimming audio: {str(e)}")
def save_transcription(transcription):
"""
Saves the transcription text to a temporary file.
Args:
transcription (str): The transcription text.
Returns:
str: The path to the transcription file.
"""
with tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w', encoding='utf-8') as temp_file:
temp_file.write(transcription)
logging.info(f"Transcription saved to: {temp_file.name}")
return temp_file.name
def get_model_options(pipeline_type):
"""
Returns a list of model IDs based on the selected pipeline type.
Args:
pipeline_type (str): The type of pipeline.
Returns:
list: A list of model IDs.
"""
if pipeline_type == "faster-batched":
return ["cstr/whisper-large-v3-turbo-german-int8_float32","cstr/whisper-large-v3-turbo-int8_float32", "SYSTRAN/faster-whisper-large-v1", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"]
elif pipeline_type == "faster-sequenced":
return ["cstr/whisper-large-v3-turbo-german-int8_float32","SYSTRAN/faster-whisper-large-v1", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"]
elif pipeline_type == "transformers":
return ["cstr/whisper-large-v3-turbo-german-int8_float32","openai/whisper-large-v3", "openai/whisper-large-v2", "openai/whisper-medium", "openai/whisper-small"]
else:
return []
# Dictionary to store loaded models
loaded_models = {}
def transcribe_audio(audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, dtype, batch_size, download_method, start_time=None, end_time=None, verbose=False, include_timecodes=False):
"""
Transcribes audio from a given source using the specified pipeline and model.
Args:
audio_input (str): Path to uploaded audio file or recorded audio.
audio_url (str): URL of audio.
proxy_url (str): Proxy URL if needed.
proxy_username (str): Proxy username.
proxy_password (str): Proxy password.
pipeline_type (str): Type of pipeline to use ('faster-batched', 'faster-sequenced', or 'transformers').
model_id (str): The ID of the model to use.
dtype (str): Data type for model computations ('int8', 'float16', or 'float32').
batch_size (int): Batch size for transcription.
download_method (str): Method to use for downloading audio.
start_time (float, optional): Start time in seconds for trimming audio.
end_time (float, optional): End time in seconds for trimming audio.
verbose (bool, optional): Whether to output verbose logging.
include_timecodes (bool, optional): Whether to include timecodes in the transcription.
Yields:
Tuple[str, str, str or None]: Metrics and messages, transcription text, path to transcription file.
"""
try:
if verbose:
logging.getLogger().setLevel(logging.INFO)
else:
logging.getLogger().setLevel(logging.WARNING)
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
if verbose:
yield verbose_messages, "", None
# Determine the audio source
audio_path = None
is_temp_file = False
if audio_input is not None and len(audio_input) > 0:
# audio_input is a filepath to uploaded or recorded audio
audio_path = audio_input
is_temp_file = False
elif audio_url is not None and len(audio_url.strip()) > 0:
# audio_url is provided
audio_path, is_temp_file = download_audio(audio_url, download_method, proxy_url, proxy_username, proxy_password)
if not audio_path:
error_msg = f"Error downloading audio from {audio_url} using method {download_method}. Check logs for details."
logging.error(error_msg)
yield verbose_messages + error_msg, "", None
return
else:
error_msg = "No audio source provided. Please upload an audio file, record audio, or enter a URL."
logging.error(error_msg)
yield verbose_messages + error_msg, "", None
return
# Convert start_time and end_time to float or None
start_time = float(start_time) if start_time else None
end_time = float(end_time) if end_time else None
if start_time is not None or end_time is not None:
audio_path = trim_audio(audio_path, start_time, end_time)
is_temp_file = True # The trimmed audio is a temporary file
verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
if verbose:
yield verbose_messages, "", None
# Model caching
model_key = (pipeline_type, model_id, dtype)
if model_key in loaded_models:
model_or_pipeline = loaded_models[model_key]
logging.info("Loaded model from cache")
else:
if pipeline_type == "faster-batched":
model = WhisperModel(model_id, device=device, compute_type=dtype)
model_or_pipeline = BatchedInferencePipeline(model=model)
elif pipeline_type == "faster-sequenced":
model_or_pipeline = WhisperModel(model_id, device=device, compute_type=dtype)
elif pipeline_type == "transformers":
# Adjust torch_dtype based on dtype and device
if dtype == "float16" and device == "cpu":
torch_dtype = torch.float32
elif dtype == "float16":
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype
)
processor = AutoProcessor.from_pretrained(model_id)
model_or_pipeline = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=batch_size,
return_timestamps=True,
device=device,
)
else:
error_msg = "Invalid pipeline type"
logging.error(error_msg)
yield verbose_messages + error_msg, "", None
return
loaded_models[model_key] = model_or_pipeline # Cache the model or pipeline
# Perform the transcription
start_time_perf = time.time()
transcription = ""
if pipeline_type == "faster-batched":
segments, info = model_or_pipeline.transcribe(audio_path, batch_size=batch_size)
# Since segments is a generator, we need to iterate over it to complete transcription
segments = list(segments) # Exhaust the generator
elif pipeline_type == "faster-sequenced":
segments, info = model_or_pipeline.transcribe(audio_path)
segments = list(segments) # Exhaust the generator
else:
result = model_or_pipeline(audio_path)
segments = result["chunks"]
end_time_perf = time.time()
# Calculate metrics
transcription_time = end_time_perf - start_time_perf
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
metrics_output = (
f"Transcription time: {transcription_time:.2f} seconds\n"
f"Audio file size: {audio_file_size:.2f} MB\n"
)
if verbose:
yield verbose_messages + metrics_output, "", None
# Compile the transcription text
for segment in segments:
if pipeline_type in ["faster-batched", "faster-sequenced"]:
if include_timecodes:
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
else:
transcription_segment = f"{segment.text}\n"
else:
if include_timecodes:
transcription_segment = f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n"
else:
transcription_segment = f"{segment['text']}\n"
transcription += transcription_segment
if verbose:
yield verbose_messages + metrics_output, transcription, None
# Save the transcription to a file
transcription_file = save_transcription(transcription)
yield verbose_messages + metrics_output, transcription, transcription_file
except Exception as e:
error_msg = f"An error occurred during transcription: {str(e)}"
logging.error(error_msg)
yield verbose_messages + error_msg, "", None
finally:
# Clean up temporary audio files
if audio_path and is_temp_file and os.path.exists(audio_path):
os.remove(audio_path)
with gr.Blocks() as iface:
gr.Markdown("# Audio Transcription")
gr.Markdown("Transcribe audio using multiple pipelines and (Faster) Whisper models.")
with gr.Row():
audio_input = gr.Audio(label="Upload or Record Audio", sources=["upload", "microphone"], type="filepath")
audio_url = gr.Textbox(label="Or Enter URL of audio file or YouTube link")
transcribe_button = gr.Button("Transcribe")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
proxy_url = gr.Textbox(label="Proxy URL", placeholder="Enter proxy URL if needed", value="", lines=1)
proxy_username = gr.Textbox(label="Proxy Username", placeholder="Proxy username (optional)", value="", lines=1)
proxy_password = gr.Textbox(label="Proxy Password", placeholder="Proxy password (optional)", value="", lines=1, type="password")
with gr.Row():
pipeline_type = gr.Dropdown(
choices=["faster-batched", "faster-sequenced", "transformers"],
label="Pipeline Type",
value="faster-batched"
)
model_id = gr.Dropdown(
label="Model",
choices=get_model_options("faster-batched"),
value="cstr/whisper-large-v3-turbo-int8_float32"
)
with gr.Row():
dtype = gr.Dropdown(choices=["int8", "float16", "float32"], label="Data Type", value="int8")
batch_size = gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
download_method = gr.Dropdown(
choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"],
label="Download Method",
value="yt-dlp"
)
with gr.Row():
start_time = gr.Number(label="Start Time (seconds)", value=None, minimum=0)
end_time = gr.Number(label="End Time (seconds)", value=None, minimum=0)
verbose = gr.Checkbox(label="Verbose Output", value=False)
include_timecodes = gr.Checkbox(label="Include timecodes in transcription", value=False)
with gr.Row():
metrics_output = gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10)
transcription_output = gr.Textbox(label="Transcription", lines=10)
transcription_file = gr.File(label="Download Transcription")
def update_model_dropdown(pipeline_type):
"""
Updates the model dropdown choices based on the selected pipeline type.
Args:
pipeline_type (str): The selected pipeline type.
Returns:
gr.update: Updated model dropdown component.
"""
try:
model_choices = get_model_options(pipeline_type)
logging.info(f"Model choices for {pipeline_type}: {model_choices}")
if model_choices:
return gr.update(choices=model_choices, value=model_choices[0], visible=True)
else:
return gr.update(choices=["No models available"], value=None, visible=False)
except Exception as e:
logging.error(f"Error in update_model_dropdown: {str(e)}")
return gr.update(choices=["Error"], value="Error", visible=True)
# Event handler for pipeline_type change
pipeline_type.change(update_model_dropdown, inputs=[pipeline_type], outputs=[model_id])
def transcribe_with_progress(*args):
# The audio_input is now the first argument
for result in transcribe_audio(*args):
yield result
transcribe_button.click(
transcribe_with_progress,
inputs=[audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, dtype, batch_size, download_method, start_time, end_time, verbose, include_timecodes],
outputs=[metrics_output, transcription_output, transcription_file]
)
gr.Examples(
examples=[
[None, "https://www.youtube.com/watch?v=daQ_hqA6HDo", "", "", "", "faster-batched", "cstr/whisper-large-v3-turbo-int8_float32", "int8", 16, "yt-dlp", None, None, False, False],
[None, "https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453.mp3", "", "", "", "faster-sequenced", "SYSTRAN/faster-whisper-large-v1", "float16", 1, "ffmpeg", 0, 300, False, False],
],
inputs=[audio_input, audio_url, proxy_url, proxy_username, proxy_password, pipeline_type, model_id, dtype, batch_size, download_method, start_time, end_time, verbose, include_timecodes],
)
iface.launch(share=False, debug=True)