import gradio as gr import os import time import sys import subprocess import tempfile import requests from urllib.parse import urlparse # Clone and install faster-whisper from GitHub subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True) subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True) subprocess.run(["pip", "install", "yt-dlp"], check=True) # Add the faster-whisper directory to the Python path sys.path.append("./faster-whisper") from faster_whisper import WhisperModel from faster_whisper.transcribe import BatchedInferencePipeline import yt_dlp def download_audio(url): parsed_url = urlparse(url) if parsed_url.netloc == 'www.youtube.com' or parsed_url.netloc == 'youtu.be': # YouTube video ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'outtmpl': '%(id)s.%(ext)s', } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(url, download=True) return f"{info['id']}.mp3" else: # Direct MP3 URL response = requests.get(url) if response.status_code == 200: with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: temp_file.write(response.content) return temp_file.name else: raise Exception(f"Failed to download audio from {url}") def transcribe_audio(input_source, batch_size): # Initialize the model model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8") batched_model = BatchedInferencePipeline(model=model) # Handle input source if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')): # It's a URL, download the audio audio_path = download_audio(input_source) else: # It's a local file path audio_path = input_source # Benchmark transcription time start_time = time.time() segments, info = batched_model.transcribe(audio_path, batch_size=batch_size) end_time = time.time() # Generate transcription transcription = "" for segment in segments: transcription += f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n" # Calculate metrics transcription_time = end_time - start_time real_time_factor = info.duration / transcription_time audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) # Size in MB # Prepare output output = f"Transcription:\n\n{transcription}\n" output += f"\nLanguage: {info.language}, Probability: {info.language_probability:.2f}\n" output += f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n" output += f"Transcription time: {transcription_time:.2f} seconds\n" output += f"Real-time factor: {real_time_factor:.2f}x\n" output += f"Audio file size: {audio_file_size:.2f} MB" # Clean up downloaded file if it was a URL if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')): os.remove(audio_path) return output # Gradio interface iface = gr.Interface( fn=transcribe_audio, inputs=[ gr.inputs.Textbox(label="Audio Source (Upload, MP3 URL, or YouTube URL)"), gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size") ], outputs=gr.Textbox(label="Transcription and Metrics"), title="Faster Whisper v3 turbo int8 transcription", description="Enter an audio file path, MP3 URL, or YouTube URL to transcribe using Faster Whisper v3 turbo (int8). Adjust the batch size for performance tuning.", examples=[ ["https://www.youtube.com/watch?v=dQw4w9WgXcQ", 16], ["https://example.com/path/to/audio.mp3", 16], ["path/to/local/audio.mp3", 16] ], ) iface.launch()