csuer commited on
Commit
5e1c248
·
1 Parent(s): 2f8ce5e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -13
app.py CHANGED
@@ -10,7 +10,6 @@ from PIL import Image
10
  labels = ["drawings", "hentai", "neutral", "porn", "sexy"]
11
  description = f"""This is a demo of classifing nsfw pictures. Label division is based on the following:
12
  [*https://github.com/alex000kim/nsfw_data_scraper*](https://github.com/alex000kim/nsfw_data_scraper).
13
- (If you want to test, please drop the example pictures instead of clicking)
14
 
15
  You can continue to train this model with the same preprocess-to-images.
16
  Finally, welcome to star my [*github repository*](https://github.com/csuer411/nsfw_classify)"""
@@ -49,17 +48,7 @@ model.load_state_dict(torch.load("classify_nsfw_v3.0.pth", map_location="cpu"))
49
  model.eval()
50
 
51
 
52
- def img_convert(inp):
53
- with io.BytesIO() as f:
54
- inp.save(f, format="JPEG")
55
- img_data = f.getvalue()
56
- img_base64 = base64.b64encode(img_data)
57
- return img_base64
58
-
59
-
60
-
61
  def predict(inp):
62
- temp_inp = inp
63
  inp = preprocess(inp).unsqueeze(0)
64
  with torch.no_grad():
65
  prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
@@ -67,8 +56,8 @@ def predict(inp):
67
  return result
68
 
69
 
70
- inputs = gr.components.Image(type='pil')
71
- outputs = gr.components.Label(num_top_classes=2)
72
  gr.Interface(
73
  fn=predict, inputs=inputs, outputs=outputs, examples=["./example/anime.jpg", "./example/real.jpg"], description=description,
74
  ).launch()
 
10
  labels = ["drawings", "hentai", "neutral", "porn", "sexy"]
11
  description = f"""This is a demo of classifing nsfw pictures. Label division is based on the following:
12
  [*https://github.com/alex000kim/nsfw_data_scraper*](https://github.com/alex000kim/nsfw_data_scraper).
 
13
 
14
  You can continue to train this model with the same preprocess-to-images.
15
  Finally, welcome to star my [*github repository*](https://github.com/csuer411/nsfw_classify)"""
 
48
  model.eval()
49
 
50
 
 
 
 
 
 
 
 
 
 
51
  def predict(inp):
 
52
  inp = preprocess(inp).unsqueeze(0)
53
  with torch.no_grad():
54
  prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
 
56
  return result
57
 
58
 
59
+ inputs = gr.Image(type='pil')
60
+ outputs = gr.Label(num_top_classes=2)
61
  gr.Interface(
62
  fn=predict, inputs=inputs, outputs=outputs, examples=["./example/anime.jpg", "./example/real.jpg"], description=description,
63
  ).launch()