Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# | |
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# References: | |
# https://gradio.app/docs/#dropdown | |
import logging | |
import shutil | |
import tempfile | |
import time | |
import urllib.request | |
from datetime import datetime | |
import gradio as gr | |
import torch | |
from pydub import AudioSegment | |
from separate import get_file, load_audio, load_model, separate | |
examples = [ | |
"yesterday-once-more-Carpenters.mp3", | |
"das-beste-Silbermond.mp3", | |
"hotel-in-california.mp3", | |
"起风了.mp3", | |
] | |
for name in examples: | |
filename = get_file( | |
"csukuangfj/spleeter-torch", | |
name, | |
subfolder="test_wavs", | |
) | |
shutil.copyfile(filename, name) | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def process_url(url: str): | |
logging.info(f"Processing URL: {url}") | |
with tempfile.NamedTemporaryFile() as f: | |
try: | |
urllib.request.urlretrieve(url, f.name) | |
return process(in_filename=f.name) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process_uploaded_file(in_filename: str): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first upload a file and then click " | |
'the button "submit for separation"', | |
"result_item_error", | |
) | |
logging.info(f"Processing uploaded file: {in_filename}") | |
try: | |
return process(in_filename=in_filename) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process_microphone(in_filename: str): | |
if in_filename is None or in_filename == "": | |
return "", build_html_output( | |
"Please first click 'Record from microphone', speak, " | |
"click 'Stop recording', and then " | |
"click the button 'submit for separation'", | |
"result_item_error", | |
) | |
logging.info(f"Processing microphone: {in_filename}") | |
try: | |
return process(in_filename=in_filename) | |
except Exception as e: | |
logging.info(str(e)) | |
return "", build_html_output(str(e), "result_item_error") | |
def process(in_filename: str): | |
logging.info(f"in_filename: {in_filename}") | |
waveform = load_audio(in_filename) | |
duration = waveform.shape[0] / 44100 # in seconds | |
vocals = load_model("vocals.pt") | |
accompaniment = load_model("accompaniment.pt") | |
now = datetime.now() | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
logging.info(f"Started at {date_time}") | |
start = time.time() | |
vocals_wave, accompaniment_wave = separate(vocals, accompaniment, waveform) | |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") | |
end = time.time() | |
vocals_wave = (vocals_wave.t() * 32768).to(torch.int16) | |
accompaniment_wave = (accompaniment_wave.t() * 32768).to(torch.int16) | |
vocals_sound = AudioSegment( | |
data=vocals_wave.numpy().tobytes(), sample_width=2, frame_rate=44100, channels=2 | |
) | |
vocals_filename = in_filename + "-vocals.mp3" | |
vocals_sound.export(vocals_filename, format="mp3", bitrate="128k") | |
accompaniment_sound = AudioSegment( | |
data=accompaniment_wave.numpy().tobytes(), | |
sample_width=2, | |
frame_rate=44100, | |
channels=2, | |
) | |
accompaniment_filename = in_filename + "-accompaniment.mp3" | |
accompaniment_sound.export(accompaniment_filename, format="mp3", bitrate="128k") | |
rtf = (end - start) / duration | |
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") | |
info = f""" | |
Input duration : {duration: .3f} s <br/> | |
Processing time: {end - start: .3f} s <br/> | |
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/> | |
""" | |
logging.info(info) | |
return vocals_filename, accompaniment_filename, build_html_output(info) | |
title = "# Music source separation with Spleeter in PyTorch" | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown(title) | |
with gr.Tabs(): | |
with gr.TabItem("Upload from disk"): | |
uploaded_file = gr.Audio( | |
sources=["upload"], # Choose between "microphone", "upload" | |
type="filepath", | |
label="Upload from disk", | |
) | |
upload_button = gr.Button("Submit for separation") | |
uploaded_html_info = gr.HTML(label="Info") | |
uploaded_vocals = gr.Audio(label="vocals") | |
uploaded_accompaniment = gr.Audio(label="accompaniment") | |
gr.Examples( | |
examples=examples, | |
inputs=[uploaded_file], | |
outputs=[uploaded_vocals, uploaded_accompaniment, uploaded_html_info], | |
fn=process_uploaded_file, | |
) | |
with gr.TabItem("Record from microphone"): | |
microphone = gr.Audio( | |
sources=["microphone"], # Choose between "microphone", "upload" | |
type="filepath", | |
label="Record from microphone", | |
) | |
record_button = gr.Button("Submit for separation") | |
recorded_html_info = gr.HTML(label="Info") | |
recorded_vocals = gr.Audio(label="vocals") | |
recorded_accompaniment = gr.Audio(label="accompaniment") | |
gr.Examples( | |
examples=examples, | |
inputs=[microphone], | |
outputs=[recorded_vocals, recorded_accompaniment, recorded_html_info], | |
fn=process_microphone, | |
) | |
with gr.TabItem("From URL"): | |
url_textbox = gr.Textbox( | |
max_lines=1, | |
placeholder="URL to an audio file", | |
label="URL", | |
interactive=True, | |
) | |
url_button = gr.Button("Submit for separation") | |
url_html_info = gr.HTML(label="Info") | |
url_vocals = gr.Audio(label="vocals") | |
url_accompaniment = gr.Audio(label="accompaniment") | |
gr.Examples( | |
examples=[ | |
"https://huggingface.co/csukuangfj/spleeter-torch/resolve/main/test_wavs/yesterday-once-more-Carpenters.mp3", | |
"https://huggingface.co/csukuangfj/spleeter-torch/resolve/main/test_wavs/das-beste-Silbermond.mp3", | |
"https://huggingface.co/csukuangfj/spleeter-torch/resolve/main/test_wavs/hotel-in-california.mp3", | |
], | |
inputs=[url_textbox], | |
outputs=[url_vocals, url_accompaniment, recorded_html_info], | |
fn=process_url, | |
) | |
upload_button.click( | |
process_uploaded_file, | |
inputs=[uploaded_file], | |
outputs=[uploaded_vocals, uploaded_accompaniment, uploaded_html_info], | |
) | |
record_button.click( | |
process_microphone, | |
inputs=[microphone], | |
outputs=[recorded_vocals, recorded_accompaniment, recorded_html_info], | |
) | |
url_button.click( | |
process_url, | |
inputs=[url_textbox], | |
outputs=[url_vocals, url_accompaniment, url_html_info], | |
) | |
torch.set_num_threads(1) | |
torch.set_num_interop_threads(1) | |
torch._C._jit_set_profiling_executor(False) | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._set_graph_executor_optimize(False) | |
if __name__ == "__main__": | |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
demo.launch() | |