File size: 30,181 Bytes
f289b70 052c741 f289b70 052c741 f289b70 052c741 f289b70 79f53cd f289b70 4779b65 f289b70 4779b65 f289b70 4779b65 f289b70 4779b65 f289b70 79f53cd f289b70 4779b65 f289b70 4779b65 f289b70 4779b65 f289b70 9fe2062 f289b70 9fe2062 f289b70 4779b65 f289b70 69cc02c 01657a2 f289b70 69cc02c f289b70 01657a2 f289b70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
import argparse
from ast import parse
import datetime
import json
import os
import time
import hashlib
import re
import gradio as gr
import requests
import random
from filelock import FileLock
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
from constants import LOGDIR
from utils import (
build_logger,
server_error_msg,
violates_moderation,
moderation_msg,
load_image_from_base64,
get_log_filename,
)
from conversation import Conversation
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "InternVL-Chat Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
def write2file(path, content):
lock = FileLock(f"{path}.lock")
with lock:
with open(path, "a") as fout:
fout.write(content)
def sort_models(models):
def custom_sort_key(model_name):
# InternVL-Chat-V1-5 should be the first item
if model_name == "InternVL-Chat-V1-5":
return (1, model_name) # 1 indicates highest precedence
elif model_name.startswith("InternVL-Chat-V1-5-"):
return (1, model_name) # 1 indicates highest precedence
else:
return (0, model_name) # 0 indicates normal order
models.sort(key=custom_sort_key, reverse=True)
try: # We have five InternVL-Chat-V1-5 models, randomly choose one to be the first
first_three = models[:4]
random.shuffle(first_three)
models[:4] = first_three
except:
pass
return models
def get_model_list():
logger.info(f"Call `get_model_list`")
ret = requests.post(args.controller_url + "/refresh_all_workers")
logger.info(f"status_code from `get_model_list`: {ret.status_code}")
assert ret.status_code == 200
ret = requests.post(args.controller_url + "/list_models")
logger.info(f"status_code from `list_models`: {ret.status_code}")
models = ret.json()["models"]
models = sort_models(models)
logger.info(f"Models (from {args.controller_url}): {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def init_state(state=None):
if state is not None:
del state
return Conversation()
def find_bounding_boxes(state, response):
pattern = re.compile(r"<ref>\s*(.*?)\s*</ref>\s*<box>\s*(\[\[.*?\]\])\s*</box>")
matches = pattern.findall(response)
results = []
for match in matches:
results.append((match[0], eval(match[1])))
returned_image = None
latest_image = state.get_images(source=state.USER)[-1]
returned_image = latest_image.copy()
width, height = returned_image.size
draw = ImageDraw.Draw(returned_image)
for result in results:
line_width = max(1, int(min(width, height) / 200))
random_color = (
random.randint(0, 128),
random.randint(0, 128),
random.randint(0, 128),
)
category_name, coordinates = result
coordinates = [
(
float(x[0]) / 1000,
float(x[1]) / 1000,
float(x[2]) / 1000,
float(x[3]) / 1000,
)
for x in coordinates
]
coordinates = [
(
int(x[0] * width),
int(x[1] * height),
int(x[2] * width),
int(x[3] * height),
)
for x in coordinates
]
for box in coordinates:
draw.rectangle(box, outline=random_color, width=line_width)
font = ImageFont.truetype("assets/SimHei.ttf", int(20 * line_width / 2))
text_size = font.getbbox(category_name)
text_width, text_height = (
text_size[2] - text_size[0],
text_size[3] - text_size[1],
)
text_position = (box[0], max(0, box[1] - text_height))
draw.rectangle(
[
text_position,
(text_position[0] + text_width, text_position[1] + text_height),
],
fill=random_color,
)
draw.text(text_position, category_name, fill="white", font=font)
return returned_image if len(matches) > 0 else None
def query_image_generation(response, sd_worker_url, timeout=15):
if not sd_worker_url:
return None
sd_worker_url = f"{sd_worker_url}/generate_image/"
pattern = r"```drawing-instruction\n(.*?)\n```"
match = re.search(pattern, response, re.DOTALL)
if match:
payload = {"caption": match.group(1)}
print("drawing-instruction:", payload)
response = requests.post(sd_worker_url, json=payload, timeout=timeout)
response.raise_for_status() # 检查HTTP请求是否成功
image = Image.open(BytesIO(response.content))
return image
else:
return None
def load_demo(url_params, request: gr.Request = None):
if not request:
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown(value=model, visible=True)
state = init_state()
return state, dropdown_update
def load_demo_refresh_model_list(request: gr.Request = None):
if not request:
logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = init_state()
dropdown_update = gr.Dropdown(
choices=models, value=models[0] if len(models) > 0 else ""
)
return state, dropdown_update
def vote_last_response(state, liked, model_selector, request: gr.Request):
conv_data = {
"tstamp": round(time.time(), 4),
"like": liked,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, True, model_selector, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, False, model_selector, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def vote_selected_response(
state, model_selector, request: gr.Request, data: gr.LikeData
):
logger.info(
f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}"
)
conv_data = {
"tstamp": round(time.time(), 4),
"like": data.liked,
"index": data.index,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
return
def flag_last_response(state, model_selector, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", model_selector, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
# state.messages[-1][-1] = None
state.update_message(Conversation.ASSISTANT, None, -1)
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = init_state()
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def change_system_prompt(state, system_prompt, request: gr.Request):
logger.info(f"Change system prompt. ip: {request.client.host}")
state.set_system_message(system_prompt)
return state
def add_text(state, message, system_prompt, model_selector, request: gr.Request):
print(f"state: {state}")
if not state:
state, model_selector = load_demo_refresh_model_list(request)
images = message.get("files", [])
text = message.get("text", "").strip()
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
# import pdb; pdb.set_trace()
textbox = gr.MultimodalTextbox(value=None, interactive=False)
if len(text) <= 0 and len(images) == 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
textbox = gr.MultimodalTextbox(
value={"text": moderation_msg}, interactive=True
)
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
images = [Image.open(path).convert("RGB") for path in images]
if len(images) > 0 and len(state.get_images(source=state.USER)) > 0:
state = init_state(state)
state.set_system_message(system_prompt)
state.append_message(Conversation.USER, text, images)
state.skip_next = False
return (state, state.to_gradio_chatbot(), textbox, model_selector) + (
disable_btn,
) * 5
def http_bot(
state,
model_selector,
temperature,
top_p,
repetition_penalty,
max_new_tokens,
max_input_tiles,
# bbox_threshold,
# mask_threshold,
request: gr.Request,
):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if hasattr(state, "skip_next") and state.skip_next:
# This generate call is skipped due to invalid inputs
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (no_change_btn,) * 5
return
# Query worker address
controller_url = args.controller_url
ret = requests.post(
controller_url + "/get_worker_address", json={"model": model_name}
)
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
# state.messages[-1][-1] = server_error_msg
state.update_message(Conversation.ASSISTANT, server_error_msg)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
all_images = state.get_images(source=state.USER)
all_image_paths = [state.save_image(image) for image in all_images]
# Make requests
pload = {
"model": model_name,
"prompt": state.get_prompt(),
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": max_new_tokens,
"max_input_tiles": max_input_tiles,
# "bbox_threshold": bbox_threshold,
# "mask_threshold": mask_threshold,
"repetition_penalty": repetition_penalty,
"images": f"List of {len(all_images)} images: {all_image_paths}",
}
logger.info(f"==== request ====\n{pload}")
pload.pop("images")
pload["prompt"] = state.get_prompt(inlude_image=True)
state.append_message(Conversation.ASSISTANT, state.streaming_placeholder)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5
try:
# Stream output
response = requests.post(
worker_addr + "/worker_generate_stream",
headers=headers,
json=pload,
stream=True,
timeout=20,
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
if "text" in data:
output = data["text"].strip()
output += state.streaming_placeholder
image = None
if "image" in data:
image = load_image_from_base64(data["image"])
_ = state.save_image(image)
state.update_message(Conversation.ASSISTANT, output, image)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5
else:
output = (
f"**{data['text']}**" + f" (error_code: {data['error_code']})"
)
state.update_message(Conversation.ASSISTANT, output, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
except requests.exceptions.RequestException as e:
state.update_message(Conversation.ASSISTANT, server_error_msg, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
ai_response = state.return_last_message()
if "<ref>" in ai_response:
returned_image = find_bounding_boxes(state, ai_response)
returned_image = [returned_image] if returned_image else []
state.update_message(Conversation.ASSISTANT, ai_response, returned_image)
if "```drawing-instruction" in ai_response:
returned_image = query_image_generation(
ai_response, sd_worker_url=sd_worker_url
)
returned_image = [returned_image] if returned_image else []
state.update_message(Conversation.ASSISTANT, ai_response, returned_image)
state.end_of_current_turn()
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{output}")
data = {
"tstamp": round(finish_tstamp, 4),
"like": None,
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_paths,
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(data) + "\n")
title_html = """
<h2> <span class="gradient-text" id="text">InternVL2</span><span class="plain-text">: Better than the Best—Expanding Performance Boundaries of Open-Source Multimodal Models with the Progressive Scaling Strategy</span></h2>
<a href="https://internvl.github.io/blog/2024-07-02-InternVL-2.0/">[📜 InternVL2 Blog]</a>
<a href="https://huggingface.co/spaces/OpenGVLab/InternVL">[🤗 HF Demo]</a>
<a href="https://github.com/OpenGVLab/InternVL?tab=readme-ov-file#quick-start-with-huggingface">[🚀 Quick Start]</a>
<a href="https://github.com/OpenGVLab/InternVL/blob/main/document/How_to_use_InternVL_API.md">[🌐 API]</a>
"""
tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""
learn_more_markdown = """
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
### Acknowledgement
This demo is modified from LLaVA's demo. Thanks for their awesome work!
"""
# .gradio-container {margin: 5px 10px 0 10px !important};
block_css = """
.gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;};
#buttons button {
min-width: min(120px,100%);
}
.gradient-text {
font-size: 28px;
width: auto;
font-weight: bold;
background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet);
background-clip: text;
-webkit-background-clip: text;
color: transparent;
}
.plain-text {
font-size: 22px;
width: auto;
font-weight: bold;
}
"""
js = """
function createWaveAnimation() {
const text = document.getElementById('text');
var i = 0;
setInterval(function() {
const colors = [
'red, orange, yellow, green, blue, indigo, violet, purple',
'orange, yellow, green, blue, indigo, violet, purple, red',
'yellow, green, blue, indigo, violet, purple, red, orange',
'green, blue, indigo, violet, purple, red, orange, yellow',
'blue, indigo, violet, purple, red, orange, yellow, green',
'indigo, violet, purple, red, orange, yellow, green, blue',
'violet, purple, red, orange, yellow, green, blue, indigo',
'purple, red, orange, yellow, green, blue, indigo, violet',
];
const angle = 45;
const colorIndex = i % colors.length;
text.style.background = `linear-gradient(${angle}deg, ${colors[colorIndex]})`;
text.style.webkitBackgroundClip = 'text';
text.style.backgroundClip = 'text';
text.style.color = 'transparent';
text.style.fontSize = '28px';
text.style.width = 'auto';
text.textContent = 'InternVL2';
text.style.fontWeight = 'bold';
i += 1;
}, 200);
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
// console.log(url_params);
// console.log('hello world...');
// console.log(window.location.search);
// console.log('hello world...');
// alert(window.location.search)
// alert(url_params);
return url_params;
}
"""
def build_demo(embed_mode):
textbox = gr.MultimodalTextbox(
interactive=True,
file_types=["image", "video"],
placeholder="Enter message or upload file...",
show_label=False,
)
with gr.Blocks(
title="InternVL-Chat",
theme=gr.themes.Default(),
css=block_css,
) as demo:
state = gr.State()
if not embed_mode:
# gr.Markdown(title_markdown)
gr.HTML(title_html)
with gr.Row():
with gr.Column(scale=2):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
# value="InternVL-Chat-V1-5",
interactive=True,
show_label=False,
container=False,
)
with gr.Accordion("System Prompt", open=False) as system_prompt_row:
system_prompt = gr.Textbox(
value="请尽可能详细地回答用户的问题。",
label="System Prompt",
interactive=True,
)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.02,
interactive=True,
label="Repetition penalty",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
max_input_tiles = gr.Slider(
minimum=1,
maximum=32,
value=12,
step=1,
interactive=True,
label="Max input tiles (control the image size)",
)
examples = gr.Examples(
examples=[
[
{
"files": [
"gallery/prod_9.jpg",
],
"text": "What's at the far end of the image?",
}
],
[
{
"files": [
"gallery/astro_on_unicorn.png",
],
"text": "What does this image mean?",
}
],
[
{
"files": [
"gallery/prod_12.png",
],
"text": "What are the consequences of the easy decisions shown in this image?",
}
],
[
{
"files": [
"gallery/child_1.jpg",
"gallery/child_2.jpg",
f"gallery/child_3.jpg",
],
"text": "这三帧图片讲述了一件什么事情?",
}
],
],
inputs=[textbox],
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="InternVL2",
height=580,
show_copy_button=True,
show_share_button=True,
avatar_images=[
"assets/human.png",
"assets/assistant.png",
],
bubble_full_width=False,
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(
value="🔄 Regenerate", interactive=False
)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
chatbot.like(
vote_selected_response,
[state, model_selector],
[],
)
flag_btn.click(
flag_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(
regenerate,
[state, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
model_selector,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
# bbox_threshold,
# mask_threshold,
],
[state, chatbot, textbox] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
textbox.submit(
add_text,
[state, textbox, system_prompt, model_selector],
[state, chatbot, textbox, model_selector] + btn_list,
).then(
http_bot,
[
state,
model_selector,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
# bbox_threshold,
# mask_threshold,
],
[state, chatbot, textbox] + btn_list,
)
submit_btn.click(
add_text,
[state, textbox, system_prompt, model_selector],
[state, chatbot, textbox, model_selector] + btn_list,
).then(
http_bot,
[
state,
model_selector,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
# bbox_threshold,
# mask_threshold,
],
[state, chatbot, textbox] + btn_list,
)
# NOTE: The following code will be not triggered when deployed on HF space.
# It's very strange. I don't know why.
"""
if args.model_list_mode == "once":
demo.load(
load_demo,
[url_params],
[state, model_selector],
js=js,
)
elif args.model_list_mode == "reload":
demo.load(
load_demo_refresh_model_list,
None,
[state, model_selector],
js=js,
)
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
"""
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--controller-url", type=str, default=None)
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument(
"--model-list-mode", type=str, default="reload", choices=["once", "reload"]
)
parser.add_argument("--sd-worker-url", type=str, default=None)
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
if not args.controller_url:
args.controller_url = os.environ.get("CONTROLLER_URL", None)
if not args.controller_url:
raise ValueError("controller-url is required.")
models = get_model_list()
sd_worker_url = args.sd_worker_url
logger.info(args)
demo = build_demo(args.embed)
demo.queue(api_open=False).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=args.concurrency_count,
)
|