topic-clustering-global-dashboard / function /topic_clustering_not_summary.py
cuongnguyen910's picture
Upload folder using huggingface_hub
5120311 verified
raw
history blame
20.1 kB
from email import message
import re
from turtle import title
from vncorenlp import VnCoreNLP
from nltk.tokenize import sent_tokenize
import torch
from sentence_transformers import SentenceTransformer
import datetime
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import requests
import json
from . import utils
import time
from summary import text_summary, get_summary_bert
from function.clean_text import normalize_text
# from . import detect_time as dt
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = SentenceTransformer('model/distiluse-base-multilingual-cased-v2').to(device)
model = SentenceTransformer('model/paraphrase-multilingual-MiniLM-L12-v2')
# model = SentenceTransformer('VoVanPhuc/sup-SimCSE-VietNamese-phobert-base').to(device)
# model.save('model/distiluse-base-multilingual-cased-v2')
use_cuda = torch.cuda.is_available()
print(torch.cuda.is_available())
if torch.cuda.is_available():
model_en = SentenceTransformer('model/paraphrase-mpnet-base-v2').to(device)
else:
model_en = model
# model_en.save('model/paraphrase-mpnet-base-v2')
annotator = VnCoreNLP('vncorenlp/VnCoreNLP-1.1.1.jar', port=9191, annotators="wseg,pos", max_heap_size='-Xmx8g')
def detect_postaging(text_in):
word_segmented_text = annotator.annotate(text_in)
lst_k = []
for se in word_segmented_text["sentences"]:
for kw in se:
if kw["posTag"] in ("Np", "Ny", "N"):
if kw["posTag"] == "N" and "_" not in kw["form"]:
continue
lst_k.append(kw["form"].replace("_", " "))
return list(set(lst_k))
def clean_text(text_in):
doc = re.sub('<.*?>', '', text_in)
doc = re.sub('(function).*}', ' ', doc)
# link
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.vgp)', ' ', doc)
# escape sequence
doc = re.sub('\n', ' ', doc)
doc = re.sub('\t', ' ', doc)
doc = re.sub('\r', ' ', doc)
doc = normalize_text(doc)
return doc
def data_cleaning(docs):
res = []
for d in docs:
if 'message' in d:
# css and js
doc = re.sub('<.*?>', '', d['message'])
doc = re.sub('(function).*}', ' ', doc)
# link
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\/\/)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.htm)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.html)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vn)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.net)', ' ', doc)
doc = re.sub('(https:\/\/).*?(\.vgp)', ' ', doc)
doc = re.sub('(http:\/\/).*?(\.vgp)', ' ', doc)
# escape sequence
doc = re.sub('\n', ' ', doc)
doc = re.sub('\t', ' ', doc)
doc = re.sub('\r', ' ', doc)
d['message'] = doc
res.append(d)
return res
def segment(docs, lang="vi"):
segmented_docs = []
for d in docs:
# if len(d.get('message', "")) > 8000 or len(d.get('message', "")) < 100:
if len(d.get('message', "")) > 8000:
continue
if 'snippet' not in d:
continue
try:
if lang == "vi":
snippet = d.get('snippet', "")
segmented_snippet = ""
segmented_sentences_snippet = annotator.tokenize(snippet)
for sentence in segmented_sentences_snippet:
segmented_snippet += ' ' + ' '.join(sentence)
segmented_snippet = segmented_snippet.replace('\xa0', '')
d['segmented_snippet'] = segmented_snippet
segmented_docs.append(d)
except Exception:
pass
return segmented_docs
def timestamp_to_date(timestamp):
return datetime.datetime.fromtimestamp(timestamp).strftime('%d/%m/%Y')
def post_processing(response, top_cluster=5, top_sentence=5, topn_summary=5, sorted_field='', max_doc_per_cluster = 50, delete_message=True):
print(f'[INFO] sorted_field: {sorted_field}')
MAX_DOC_PER_CLUSTER = max_doc_per_cluster
lst_ids = []
lst_top = []
lst_res = []
for i in response:
lst_ids.append(i)
if not sorted_field.strip():
lst_top.append(len(response[i]))
else:
lst_top.append(response[i][0]['max_score'])
idx = np.argsort(np.array(lst_top))[::-1]
if top_cluster == -1:
top_cluster = len(idx)
for i in idx[: top_cluster]:
ik = lst_ids[i]
if top_sentence == -1:
top_sentence = len(response[ik])
lst_check_title = []
lst_check_not_title = []
i_c_t = 0
for resss in response[ik]:
r_title = resss.get("title", "")
if r_title and not r_title.endswith("..."):
lst_check_title.append(resss)
i_c_t += 1
else:
lst_check_not_title.append(resss)
if i_c_t == top_sentence:
break
if i_c_t == top_sentence:
lst_res.append(lst_check_title)
else:
lst_check_title.extend(lst_check_not_title)
lst_res.append(lst_check_title[:top_sentence])
#lst_res.append(response[ik][:top_sentence])
dict_res = {}
for i in range(len(lst_res)):
dict_res[str(i + 1)] = lst_res[i][:MAX_DOC_PER_CLUSTER]
for j in range(min(len(dict_res[str(i + 1)]), 3)):
dict_res[str(i + 1)][0]["title_summarize"].append(dict_res[str(i + 1)][j].get("snippet", ""))
summary_text = get_summary_bert(dict_res[str(i + 1)][0].get("message", ""), lang=get_summary_bert(dict_res[str(i + 1)][0].get("lang", "vi"), topn=topn_summary, title=dict_res[str(i + 1)][0].get("title", ""), snippet=dict_res[str(i + 1)][0].get("snippet", ""))
if len(summary_text) < 10:
summary_text = dict_res[str(i + 1)][0].get("snippet", "")
if len(summary_text) < 10:
summary_text = dict_res[str(i + 1)][0].get("title", "")
dict_res[str(i + 1)][0]["content_summary"] = utils.remove_image_keyword(summary_text)
kew_phares = []
dict_res[str(i + 1)][0]["topic_keywords"] = kew_phares
if delete_message:
for j in range(len(dict_res[str(i + 1)])):
if "message" in dict_res[str(i + 1)][j]:
del dict_res[str(i + 1)][j]["message"]
return dict_res
def get_lang(docs):
lang_vi = 0
lang_en = 0
for d in docs:
if d.get("lang", "") == "vi":
lang_vi += 1
else:
lang_en += 1
if lang_vi >= lang_en:
return "vi"
return "en"
# def topic_clustering(docs, distance_threshold, top_cluster=5, top_sentence=5, topn_summary=5, sorted_field=''):
# global model, model_en
# docs = docs[:30000]
# lang = get_lang(docs)
# result = {}
# docs = segment(docs, lang=lang)
# if len(docs) < 2:
# return result
# if lang == "vi":
# features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
# vectors = model.encode(features, show_progress_bar=False)
# else:
# features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
# vectors = model_en.encode(features, show_progress_bar=False)
# clusteror = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, affinity='cosine',
# linkage='single', distance_threshold=distance_threshold)
# clusteror.fit(vectors)
# print(clusteror.n_clusters_)
# for i in range(clusteror.n_clusters_):
# result[str(i + 1)] = []
# for i in range(len(clusteror.labels_)):
# cluster_no = clusteror.labels_[i]
# if docs[i].get('domain','') not in ["cungcau.vn","baomoi.com","news.skydoor.net"]:
# response_doc = {}
# response_doc = docs[i]
# if 'domain' in docs[i]:
# response_doc['domain'] = docs[i]['domain']
# if 'url' in docs[i]:
# response_doc['url'] = docs[i]['url']
# if 'title' in docs[i]:
# response_doc['title'] = clean_text(docs[i]['title'])
# if 'snippet' in docs[i]:
# response_doc['snippet'] = clean_text(docs[i]['snippet'])
# if 'created_time' in docs[i]:
# response_doc['created_time'] = docs[i]['created_time']
# if 'message' in docs[i]:
# title = docs[i].get('title','')
# snippet = docs[i].get('snippet','')
# message = docs[i].get('message','')
# if title.strip():
# split_mess = message.split(title)
# if len(split_mess) > 1:
# message = title.join(split_mess[1:])
# if snippet.strip():
# split_mess = message.split(snippet)
# if len(split_mess) > 1:
# message = snippet.join(split_mess[1:])
# response_doc['message'] = clean_text(message)
# if 'id' in docs[i]:
# response_doc['id'] = docs[i]['id']
# response_doc['score'] = 0.0
# response_doc['title_summarize'] = []
# response_doc['content_summary'] = ""
# response_doc['total_facebook_viral'] = 0
# result[str(cluster_no + 1)].append(response_doc)
# empty_clus_ids = []
# for x in result:
# result[x] = sorted(result[x], key=lambda i: -len(i.get('message','')))
# if len( result[x]) > 0:
# if len(result[x]) > 1:
# result[x] = check_duplicate_title_domain(result[x])
# result[x][0]['num_docs'] = len(result[x])
# else:
# empty_clus_ids.append(x)
# for x in empty_clus_ids:
# result.pop(x,None)
# # result = dict(sorted(result.items(), key=lambda i: -len(i[1])))[:top_cluster]
# return post_processing(result, top_cluster=top_cluster, top_sentence=top_sentence, topn_summary=topn_summary, sorted_field = sorted_field)
def topic_clustering(docs, distance_threshold, top_cluster=5, top_sentence=5, topn_summary=5, sorted_field='', max_doc_per_cluster=50, delete_message=True):
global model, model_en
docs = docs[:30000]
lang = get_lang(docs)
result = {}
cluster_score = {}
docs = segment(docs, lang=lang)
if len(docs) < 2:
return result
if lang == "vi":
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
vectors = model.encode(features, show_progress_bar=False)
else:
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
vectors = model_en.encode(features, show_progress_bar=False)
clusteror = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, affinity='cosine',
linkage='single', distance_threshold=distance_threshold)
clusteror.fit(vectors)
print(clusteror.n_clusters_)
for i in range(clusteror.n_clusters_):
result[str(i + 1)] = []
cluster_score[str(i + 1)] = 0
for i in range(len(clusteror.labels_)):
cluster_no = clusteror.labels_[i]
if docs[i].get('domain','') not in ["cungcau.vn","baomoi.com","news.skydoor.net"]:
response_doc = {}
response_doc = docs[i]
score = response_doc.get('score', 0)
if not docs[i].get('message','').strip():
continue
if score > cluster_score[str(cluster_no + 1)]:
cluster_score[str(cluster_no + 1)] = score
if 'domain' in docs[i]:
response_doc['domain'] = docs[i]['domain']
if 'url' in docs[i]:
response_doc['url'] = docs[i]['url']
if 'title' in docs[i]:
response_doc['title'] = clean_text(docs[i]['title'])
if 'snippet' in docs[i]:
response_doc['snippet'] = clean_text(docs[i]['snippet'])
if 'created_time' in docs[i]:
response_doc['created_time'] = docs[i]['created_time']
if 'message' in docs[i]:
title = docs[i].get('title','')
snippet = docs[i].get('snippet','')
message = docs[i].get('message','')
if title.strip():
split_mess = message.split(title)
if len(split_mess) > 1:
message = title.join(split_mess[1:])
if snippet.strip():
split_mess = message.split(snippet)
if len(split_mess) > 1:
message = snippet.join(split_mess[1:])
response_doc['message'] = clean_text(message)
if 'id' in docs[i]:
response_doc['id'] = docs[i]['id']
# response_doc['score'] = 0.0
response_doc['title_summarize'] = []
response_doc['content_summary'] = ""
response_doc['total_facebook_viral'] = 0
result[str(cluster_no + 1)].append(response_doc)
empty_clus_ids = []
for x in result:
result[x] = sorted(result[x], key=lambda i: -len(i.get('message','')))
if len( result[x]) > 0:
if len(result[x]) > 1:
result[x] = check_duplicate_title_domain(result[x])
result[x][0]['num_docs'] = len(result[x])
result[x][0]['max_score'] = cluster_score[x]
else:
empty_clus_ids.append(x)
for x in empty_clus_ids:
result.pop(x,None)
# result = dict(sorted(result.items(), key=lambda i: -len(i[1])))[:top_cluster]
return post_processing(result, top_cluster=top_cluster, top_sentence=top_sentence, topn_summary=topn_summary, sorted_field = sorted_field, max_doc_per_cluster=max_doc_per_cluster, delete_message=delete_message)
def check_duplicate_title_domain(docs):
lst_title_domain = [f"{d.get('domain', '')} {d.get('title','')}" for d in docs]
for i in range(1,len(lst_title_domain) -1):
for j in range(i+1,len(lst_title_domain)):
if lst_title_domain[j] == lst_title_domain[i]:
lst_title_domain[j] = 'dup'
lst_filter_docs = [docs[i] for i,x in enumerate(lst_title_domain) if x != 'dup']
return lst_filter_docs
def convert_date(text):
text = text.replace(".", "/")
text = text.replace("-", "/")
return text
def check_keyword(sentence):
keyword = ['sáng', 'trưa', 'chiều', 'tối', 'đến', 'hôm', 'ngày', 'tới']
for k in keyword:
if k in sentence:
return True
return False
def extract_events_and_time(docs, publish_date):
def standardize(date_str):
return date_str.replace('.', '/').replace('-', '/')
def add_0(date_str):
date_str = date_str.split('/')
res = []
for o in date_str:
o = re.sub('\s+', '', o)
if len(o) < 2:
o = '0' + o
res.append(o)
date_str = '/'.join(res)
return date_str
def get_date_list(reg, sentence):
find_object = re.finditer(reg, sentence)
date_list = [x.group() for x in find_object]
return date_list
year = publish_date.split('/')[2]
# dd/mm/yyyy
reg_exp_1 = '(\D|^)(?:0?[1-9]|[12][0-9]|3[01])[- \/.](?:0?[1-9]|1[012])[- \/.]([12]([0-9]){3})(\D|$)'
# #mm/yyyy
# reg_exp_5 = '(\D|^)(?:0?[1-9]|1[012])[- \/.]([12]([0-9]){3})(\D|$)'
# dd/mm
reg_exp_2 = '(\D|^)(?:0?[1-9]|[12][0-9]|3[01])[- \/.](?:0?[1-9]|1[012])(\D|$)'
# ngày dd tháng mm năm yyyy
reg_exp_3 = '(ngày)\s*\d{1,2}\s*(tháng)\s*\d{1,2}\s*(năm)\s*\d{4}'
# ngày dd tháng mm
reg_exp_4 = '(ngày)\s*\d{1,2}\s*(tháng)\s*\d{1,2}'
result = []
for d in docs:
text = d['message']
for sentence in sent_tokenize(text):
lower_sentence = sentence.lower()
c = re.search(reg_exp_3, sentence.lower())
d = re.search(reg_exp_4, sentence.lower())
# e = re.search(reg_exp_5, sentence.lower())
a = re.search(reg_exp_1, sentence)
b = re.search(reg_exp_2, sentence)
#
if (a or b or c or d) and check_keyword(lower_sentence):
date_list = get_date_list(reg_exp_1, lower_sentence)
date_entity = ''
if date_list:
date_entity = add_0(standardize(date_list[0]))
elif get_date_list(reg_exp_2, lower_sentence):
date_list = get_date_list(reg_exp_2, lower_sentence)
date_entity = add_0(standardize(date_list[0]) + '/' + year)
elif get_date_list(reg_exp_3, lower_sentence):
date_list = get_date_list(reg_exp_3, lower_sentence)
date_entity = date_list[0].replace('ngày', '').replace('tháng', '').replace('năm', '').strip()
date_entity = re.sub('\s+', ' ', date_entity)
date_entity = date_entity.replace(' ', '/')
date_entity = add_0(date_entity)
else:
date_list = get_date_list(reg_exp_4, lower_sentence)
if date_list != []:
date_entity = date_list[0].replace('ngày', '').replace('tháng', '').replace('năm', '').strip()
date_entity = re.sub('\s+', ' ', date_entity)
date_entity = date_entity.replace(' ', '/')
date_entity = date_entity + '/' + year
date_entity = add_0(date_entity)
result.append((sentence, date_entity))
return result