|
from email import message
|
|
import re
|
|
from vncorenlp import VnCoreNLP
|
|
from nltk.tokenize import sent_tokenize
|
|
import torch
|
|
from sentence_transformers import SentenceTransformer
|
|
import datetime
|
|
from sklearn.cluster import AgglomerativeClustering
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
import numpy as np
|
|
import requests
|
|
import json
|
|
from . import utils
|
|
import time
|
|
from summary import text_summary, get_summary_bert
|
|
from function.clean_text import normalize_text
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
model = SentenceTransformer('model/distiluse-base-multilingual-cased-v2').to(device)
|
|
|
|
|
|
|
|
use_cuda = torch.cuda.is_available()
|
|
print(torch.cuda.is_available())
|
|
if torch.cuda.is_available():
|
|
model_en = SentenceTransformer('model/paraphrase-mpnet-base-v2').to(device)
|
|
else:
|
|
model_en = model
|
|
|
|
annotator = VnCoreNLP('vncorenlp/VnCoreNLP-1.1.1.jar', port=9191, annotators="wseg,pos", max_heap_size='-Xmx8g')
|
|
|
|
|
|
def detect_postaging(text_in):
|
|
word_segmented_text = annotator.annotate(text_in)
|
|
lst_k = []
|
|
for se in word_segmented_text["sentences"]:
|
|
for kw in se:
|
|
if kw["posTag"] in ("Np", "Ny", "N"):
|
|
if kw["posTag"] == "N" and "_" not in kw["form"]:
|
|
continue
|
|
lst_k.append(kw["form"].replace("_", " "))
|
|
return list(set(lst_k))
|
|
|
|
def clean_text(text_in):
|
|
doc = re.sub('<.*?>', '', text_in)
|
|
doc = re.sub('(function).*}', ' ', doc)
|
|
|
|
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.htm)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.html)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\/\/)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.htm)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.html)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vn)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.net)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vgp)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.vgp)', ' ', doc)
|
|
|
|
doc = re.sub('(http:\/\/).*?(\.htm)', ' ', doc)
|
|
doc = re.sub('(http:\/\/).*?(\.html)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\/\/)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.htm)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.html)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.vn)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.net)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.vgp)', ' ', doc)
|
|
doc = re.sub('(http:\/\/).*?(\.vgp)', ' ', doc)
|
|
|
|
doc = re.sub('\n', ' ', doc)
|
|
doc = re.sub('\t', ' ', doc)
|
|
doc = re.sub('\r', ' ', doc)
|
|
|
|
doc = normalize_text(doc)
|
|
return doc
|
|
|
|
|
|
def data_cleaning(docs):
|
|
res = []
|
|
for d in docs:
|
|
if 'message' in d:
|
|
|
|
doc = re.sub('<.*?>', '', d['message'])
|
|
doc = re.sub('(function).*}', ' ', doc)
|
|
|
|
|
|
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.htm)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.html)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\/\/)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.htm)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.html)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vn)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.net)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(https:\/\/).*?(\.vgp)', ' ', doc)
|
|
doc = re.sub('(Nguồn)\s*?(http:\/\/).*?(\.vgp)', ' ', doc)
|
|
|
|
doc = re.sub('(http:\/\/).*?(\.htm)', ' ', doc)
|
|
doc = re.sub('(http:\/\/).*?(\.html)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\/\/)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.htm)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.html)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.vn)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.net)', ' ', doc)
|
|
doc = re.sub('(https:\/\/).*?(\.vgp)', ' ', doc)
|
|
doc = re.sub('(http:\/\/).*?(\.vgp)', ' ', doc)
|
|
|
|
doc = re.sub('\n', ' ', doc)
|
|
doc = re.sub('\t', ' ', doc)
|
|
doc = re.sub('\r', ' ', doc)
|
|
|
|
d['message'] = doc
|
|
res.append(d)
|
|
return res
|
|
|
|
|
|
def segment(docs, lang="vi"):
|
|
segmented_docs = []
|
|
for d in docs:
|
|
|
|
if len(d.get('message', "")) > 8000:
|
|
continue
|
|
if 'snippet' not in d:
|
|
continue
|
|
try:
|
|
if lang == "vi":
|
|
snippet = d.get('snippet', "")
|
|
segmented_snippet = ""
|
|
segmented_sentences_snippet = annotator.tokenize(snippet)
|
|
for sentence in segmented_sentences_snippet:
|
|
segmented_snippet += ' ' + ' '.join(sentence)
|
|
segmented_snippet = segmented_snippet.replace('\xa0', '')
|
|
d['segmented_snippet'] = segmented_snippet
|
|
segmented_docs.append(d)
|
|
except Exception:
|
|
pass
|
|
return segmented_docs
|
|
|
|
|
|
def timestamp_to_date(timestamp):
|
|
return datetime.datetime.fromtimestamp(timestamp).strftime('%d/%m/%Y')
|
|
|
|
|
|
def post_processing(response, top_cluster=5, top_sentence=5, topn_summary=5, sorted_field='', max_doc_per_cluster = 50):
|
|
print(f'[INFO] sorted_field: {sorted_field}')
|
|
MAX_DOC_PER_CLUSTER = max_doc_per_cluster
|
|
|
|
lst_ids = []
|
|
lst_top = []
|
|
lst_res = []
|
|
for i in response:
|
|
lst_ids.append(i)
|
|
|
|
if not sorted_field.strip():
|
|
lst_top.append(len(response[i]))
|
|
else:
|
|
lst_top.append(response[i][0]['max_score'])
|
|
|
|
idx = np.argsort(np.array(lst_top))[::-1]
|
|
if top_cluster == -1:
|
|
top_cluster = len(idx)
|
|
for i in idx[: top_cluster]:
|
|
ik = lst_ids[i]
|
|
if top_sentence == -1:
|
|
top_sentence = len(response[ik])
|
|
lst_check_title = []
|
|
lst_check_not_title = []
|
|
i_c_t = 0
|
|
for resss in response[ik]:
|
|
r_title = resss.get("title", "")
|
|
if r_title and not r_title.endswith("..."):
|
|
lst_check_title.append(resss)
|
|
i_c_t += 1
|
|
else:
|
|
lst_check_not_title.append(resss)
|
|
if i_c_t == top_sentence:
|
|
break
|
|
if i_c_t == top_sentence:
|
|
lst_res.append(lst_check_title)
|
|
else:
|
|
lst_check_title.extend(lst_check_not_title)
|
|
lst_res.append(lst_check_title[:top_sentence])
|
|
|
|
dict_res = {}
|
|
for i in range(len(lst_res)):
|
|
dict_res[str(i + 1)] = lst_res[i][:MAX_DOC_PER_CLUSTER]
|
|
for j in range(min(len(dict_res[str(i + 1)]), 3)):
|
|
dict_res[str(i + 1)][0]["title_summarize"].append(dict_res[str(i + 1)][j].get("snippet", ""))
|
|
summary_text = get_summary_bert(dict_res[str(i + 1)][0].get("message", ""), lang=dict_res[str(i + 1)][0].get("lang", "vi"), topn=topn_summary, title=dict_res[str(i + 1)][0].get("title", ""), snippet=dict_res[str(i + 1)][0].get("snippet", ""))
|
|
if len(summary_text) < 10:
|
|
summary_text = dict_res[str(i + 1)][0].get("snippet", "")
|
|
if len(summary_text) < 10:
|
|
summary_text = dict_res[str(i + 1)][0].get("title", "")
|
|
dict_res[str(i + 1)][0]["content_summary"] = utils.remove_image_keyword(summary_text)
|
|
kew_phares = []
|
|
dict_res[str(i + 1)][0]["topic_keywords"] = kew_phares
|
|
for j in range(len(dict_res[str(i + 1)])):
|
|
if "message" in dict_res[str(i + 1)][j]:
|
|
del dict_res[str(i + 1)][j]["message"]
|
|
return dict_res
|
|
|
|
|
|
def get_lang(docs):
|
|
lang_vi = 0
|
|
lang_en = 0
|
|
for d in docs:
|
|
if d.get("lang", "") == "vi":
|
|
lang_vi += 1
|
|
else:
|
|
lang_en += 1
|
|
if lang_vi >= lang_en:
|
|
return "vi"
|
|
return "en"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def topic_clustering(docs, distance_threshold, top_cluster=5, top_sentence=5, topn_summary=5, sorted_field='', max_doc_per_cluster=50, delete_message=True):
|
|
global model, model_en
|
|
docs = docs[:30000]
|
|
lang = get_lang(docs)
|
|
result = {}
|
|
cluster_score = {}
|
|
|
|
if len(docs) < 2:
|
|
return result
|
|
if lang == "vi":
|
|
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
|
|
vectors = model.encode(features, show_progress_bar=False)
|
|
else:
|
|
features = [doc.get('title', "") + ". " + doc.get('snippet', "") for doc in docs]
|
|
vectors = model_en.encode(features, show_progress_bar=False)
|
|
clusteror = AgglomerativeClustering(n_clusters=None, compute_full_tree=True, affinity='cosine',
|
|
linkage='single', distance_threshold=distance_threshold)
|
|
clusteror.fit(vectors)
|
|
print(clusteror.n_clusters_)
|
|
for i in range(clusteror.n_clusters_):
|
|
result[str(i + 1)] = []
|
|
cluster_score[str(i + 1)] = 0
|
|
for i in range(len(clusteror.labels_)):
|
|
cluster_no = clusteror.labels_[i]
|
|
if docs[i].get('domain','') not in ["cungcau.vn","baomoi.com","news.skydoor.net"]:
|
|
response_doc = {}
|
|
response_doc = docs[i]
|
|
score = response_doc.get('score', 0)
|
|
if not docs[i].get('message','').strip():
|
|
continue
|
|
if score > cluster_score[str(cluster_no + 1)]:
|
|
cluster_score[str(cluster_no + 1)] = score
|
|
if 'domain' in docs[i]:
|
|
response_doc['domain'] = docs[i]['domain']
|
|
if 'url' in docs[i]:
|
|
response_doc['url'] = docs[i]['url']
|
|
if 'title' in docs[i]:
|
|
response_doc['title'] = clean_text(docs[i]['title'])
|
|
if 'snippet' in docs[i]:
|
|
response_doc['snippet'] = clean_text(docs[i]['snippet'])
|
|
if 'created_time' in docs[i]:
|
|
response_doc['created_time'] = docs[i]['created_time']
|
|
if 'message' in docs[i]:
|
|
title = docs[i].get('title','')
|
|
snippet = docs[i].get('snippet','')
|
|
message = docs[i].get('message','')
|
|
if title.strip():
|
|
split_mess = message.split(title)
|
|
if len(split_mess) > 1:
|
|
message = title.join(split_mess[1:])
|
|
if snippet.strip():
|
|
split_mess = message.split(snippet)
|
|
if len(split_mess) > 1:
|
|
message = snippet.join(split_mess[1:])
|
|
|
|
response_doc['message'] = clean_text(message)
|
|
if 'id' in docs[i]:
|
|
response_doc['id'] = docs[i]['id']
|
|
|
|
response_doc['title_summarize'] = []
|
|
response_doc['content_summary'] = ""
|
|
response_doc['total_facebook_viral'] = 0
|
|
result[str(cluster_no + 1)].append(response_doc)
|
|
|
|
empty_clus_ids = []
|
|
for x in result:
|
|
result[x] = sorted(result[x], key=lambda i: -len(i.get('message','')))
|
|
if len( result[x]) > 0:
|
|
if len(result[x]) > 1:
|
|
result[x] = check_duplicate_title_domain(result[x])
|
|
result[x][0]['num_docs'] = len(result[x])
|
|
result[x][0]['max_score'] = cluster_score[x]
|
|
else:
|
|
empty_clus_ids.append(x)
|
|
|
|
for x in empty_clus_ids:
|
|
result.pop(x,None)
|
|
|
|
return post_processing(result, top_cluster=top_cluster, top_sentence=top_sentence, topn_summary=topn_summary, sorted_field = sorted_field, max_doc_per_cluster=max_doc_per_cluster)
|
|
|
|
def check_duplicate_title_domain(docs):
|
|
lst_title_domain = [f"{d.get('domain', '')} {d.get('title','')}" for d in docs]
|
|
for i in range(1,len(lst_title_domain) -1):
|
|
for j in range(i+1,len(lst_title_domain)):
|
|
if lst_title_domain[j] == lst_title_domain[i]:
|
|
lst_title_domain[j] = 'dup'
|
|
lst_filter_docs = [docs[i] for i,x in enumerate(lst_title_domain) if x != 'dup']
|
|
return lst_filter_docs
|
|
def convert_date(text):
|
|
text = text.replace(".", "/")
|
|
text = text.replace("-", "/")
|
|
return text
|
|
|
|
|
|
def check_keyword(sentence):
|
|
keyword = ['sáng', 'trưa', 'chiều', 'tối', 'đến', 'hôm', 'ngày', 'tới']
|
|
for k in keyword:
|
|
if k in sentence:
|
|
return True
|
|
return False
|
|
|
|
|
|
def extract_events_and_time(docs, publish_date):
|
|
def standardize(date_str):
|
|
return date_str.replace('.', '/').replace('-', '/')
|
|
|
|
def add_0(date_str):
|
|
|
|
date_str = date_str.split('/')
|
|
res = []
|
|
for o in date_str:
|
|
o = re.sub('\s+', '', o)
|
|
if len(o) < 2:
|
|
o = '0' + o
|
|
res.append(o)
|
|
date_str = '/'.join(res)
|
|
return date_str
|
|
|
|
def get_date_list(reg, sentence):
|
|
find_object = re.finditer(reg, sentence)
|
|
date_list = [x.group() for x in find_object]
|
|
return date_list
|
|
|
|
year = publish_date.split('/')[2]
|
|
|
|
|
|
reg_exp_1 = '(\D|^)(?:0?[1-9]|[12][0-9]|3[01])[- \/.](?:0?[1-9]|1[012])[- \/.]([12]([0-9]){3})(\D|$)'
|
|
|
|
|
|
|
|
reg_exp_2 = '(\D|^)(?:0?[1-9]|[12][0-9]|3[01])[- \/.](?:0?[1-9]|1[012])(\D|$)'
|
|
|
|
|
|
reg_exp_3 = '(ngày)\s*\d{1,2}\s*(tháng)\s*\d{1,2}\s*(năm)\s*\d{4}'
|
|
|
|
reg_exp_4 = '(ngày)\s*\d{1,2}\s*(tháng)\s*\d{1,2}'
|
|
|
|
result = []
|
|
for d in docs:
|
|
text = d['message']
|
|
for sentence in sent_tokenize(text):
|
|
lower_sentence = sentence.lower()
|
|
c = re.search(reg_exp_3, sentence.lower())
|
|
d = re.search(reg_exp_4, sentence.lower())
|
|
|
|
a = re.search(reg_exp_1, sentence)
|
|
b = re.search(reg_exp_2, sentence)
|
|
|
|
if (a or b or c or d) and check_keyword(lower_sentence):
|
|
date_list = get_date_list(reg_exp_1, lower_sentence)
|
|
date_entity = ''
|
|
if date_list:
|
|
date_entity = add_0(standardize(date_list[0]))
|
|
elif get_date_list(reg_exp_2, lower_sentence):
|
|
date_list = get_date_list(reg_exp_2, lower_sentence)
|
|
date_entity = add_0(standardize(date_list[0]) + '/' + year)
|
|
elif get_date_list(reg_exp_3, lower_sentence):
|
|
date_list = get_date_list(reg_exp_3, lower_sentence)
|
|
|
|
date_entity = date_list[0].replace('ngày', '').replace('tháng', '').replace('năm', '').strip()
|
|
date_entity = re.sub('\s+', ' ', date_entity)
|
|
date_entity = date_entity.replace(' ', '/')
|
|
date_entity = add_0(date_entity)
|
|
else:
|
|
date_list = get_date_list(reg_exp_4, lower_sentence)
|
|
if date_list != []:
|
|
date_entity = date_list[0].replace('ngày', '').replace('tháng', '').replace('năm', '').strip()
|
|
date_entity = re.sub('\s+', ' ', date_entity)
|
|
date_entity = date_entity.replace(' ', '/')
|
|
date_entity = date_entity + '/' + year
|
|
date_entity = add_0(date_entity)
|
|
result.append((sentence, date_entity))
|
|
return result
|
|
|