cuongnguyen910's picture
Upload folder using huggingface_hub
5120311 verified
from entity import Docs, Cluster, Preprocess, SummaryInput
from fastapi import FastAPI
import time
import hashlib
import json
from fastapi.middleware.cors import CORSMiddleware
# from function import topic_clustering as tc
from function import topic_clustering_v2 as tc
from iclibs.ic_rabbit import ICRabbitMQ
from get_config import config_params
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def get_hash_id(item: Docs):
str_hash = ""
for it in item.response["docs"]:
str_hash += it["url"]
str_hash += str(item.top_cluster)
str_hash += str(item.top_sentence)
str_hash += str(item.topn_summary)
str_hash += str(item.top_doc)
str_hash += str(item.threshold)
if item.sorted_field.strip():
str_hash += str(item.sorted_field)
if item.delete_message:
str_hash += str(item.delete_message)
return hashlib.sha224(str_hash.encode("utf-8")).hexdigest()
try:
with open("log_run/log.txt") as f:
data_dict = json.load(f)
except Exception as ve:
print(ve)
data_dict = {}
@app.post("/newsanalysis/topic_clustering")
async def topic_clustering(item: Docs):
docs = item.response["docs"]
# threshold = item.threshold
print("start ")
print("len doc: ", len(docs))
st_time = time.time()
top_cluster = item.top_cluster
top_sentence = item.top_sentence
topn_summary = item.topn_summary
sorted_field = item.sorted_field
max_doc_per_cluster = item.max_doc_per_cluster
hash_str = get_hash_id(item)
# threshold = 0.1
# item.threshold = threshold
# with open("log/input_{0}.txt".format(st_time), "w+") as f:
# f.write(json.dumps({"docs": docs, "key": item.keyword}))
print(hash_str)
if len(docs) > 200:
try:
if hash_str in data_dict:
path_res = data_dict[hash_str]["response_path"]
with open(path_res) as ff:
results = json.load(ff)
print("time analysis (cache): ", time.time() - st_time)
return results
except Exception as vee:
print(vee)
results = tc.topic_clustering(docs, item.threshold, top_cluster=top_cluster, top_sentence=top_sentence,
topn_summary=topn_summary, sorted_field=sorted_field, max_doc_per_cluster=max_doc_per_cluster, delete_message=item.delete_message)
path_res = "log/result_{0}.txt".format(hash_str)
with open(path_res, "w+") as ff:
ff.write(json.dumps(results))
data_dict[hash_str] = {"time": st_time, "response_path": path_res}
lst_rm = []
for dt in data_dict:
if time.time() - data_dict[dt]["time"] > 30 * 24 * 3600:
lst_rm.append(dt)
for dt in lst_rm:
del data_dict[dt]
with open("log_run/log.txt", "w+") as ff:
ff.write(json.dumps(data_dict))
print("time analysis: ", time.time() - st_time)
return results
def init_rabbit_queue(usr, passw, host, vir_host, queue_name, durable, max_priority, exchange=""):
connection = ICRabbitMQ(host, vir_host, usr, passw)
connection.init_connection()
channel = connection.init_queue(
queue_name, exchange=exchange, durable=durable, max_priority=max_priority)
return channel, connection, queue_name
@app.post("/newsanalysis/topic_clustering_2")
async def topic_clustering_v2(item: Docs):
docs = item.response["docs"]
meta = item.response.get('meta', {})
# threshold = item.threshold
print("start ")
print("len doc: ", len(docs))
st_time = time.time()
top_cluster = item.top_cluster
top_sentence = item.top_sentence
topn_summary = item.topn_summary
hash_str = get_hash_id(item)
# threshold = 0.1
# item.threshold = threshold
# with open("log/input_{0}.txt".format(st_time), "w+") as f:
# f.write(json.dumps({"docs": docs, "key": item.keyword}))
data_push = {
"docs": docs,
"threshold": item.threshold,
"top_cluster": top_cluster,
"top_sentence": top_sentence,
"topn_summary": topn_summary,
"hash_str": hash_str,
"st_time": st_time,
"meta": meta
}
params = config_params['queue_topic_clustering']
usr_name = params["usr_name"]
password = str(params["password"])
host = params["host"]
virtual_host = params["virtual_host"]
queue_name = params["queue_name"]
channel_consumer, rb_consumer, queue_consumer = init_rabbit_queue(usr_name, password, host, virtual_host, queue_name, True, 10)
ICRabbitMQ.publish_message(channel_consumer, queue_consumer, data_push, priority= 1,delivery_mode=2, exchange='')
return {"message":"success"}
@app.post("/newsanalysis/topic_clustering_with_preprocess")
async def topic_clustering_with_preprocess(item: Preprocess):
with open('preprocess.json','w') as f:
json.dump(item.__dict__,f,ensure_ascii=False)
data_push = {
"type": item.type,
"threshold": item.threshold,
"top_cluster": item.top_cluster,
"benchmark_id": item.benchmark_id,
"benchmark_children_id": item.benchmark_children_id,
"source_tagids": item.source_tagids,
"preprocess": item.preprocess,
"meta": item.meta
}
params = config_params['queue_merge_clustering']
usr_name = params["usr_name"]
password = str(params["password"])
host = params["host"]
virtual_host = params["virtual_host"]
queue_name = params["queue_name"]
channel_consumer, rb_consumer, queue_consumer = init_rabbit_queue(usr_name, password, host, virtual_host, queue_name, True, 10)
ICRabbitMQ.publish_message(channel_consumer, queue_consumer, data_push, priority= 1,delivery_mode=2, exchange='')
return {"message":"success"}
@app.post("/newsanalysis/summary")
async def summary(item: SummaryInput):
try:
summary_txt = tc.get_summary_bert(item.text, lang=None, topn=item.topn, ratio = 0.2)
except Exception as ex:
# raise ex
summary_txt = ''
return summary_txt