cupcakes323's picture
Create app.py
9b4607e verified
import gradio as gr
import torch
import librosa
import numpy as np
# Assuming you have a model file for voice conversion
from model import load_model, convert_voice
# Load the pre-trained voice conversion model
model = load_model("path_to_pretrained_model") # Adjust this based on the actual RVC model
def voice_conversion(source_audio, target_voice):
"""
Function to perform voice conversion from source to target voice style
"""
# Convert input audio to the desired format (this may vary depending on your model)
y, sr = librosa.load(source_audio)
input_audio = torch.tensor(y).unsqueeze(0)
# Use model for voice conversion
converted_audio = convert_voice(model, input_audio, target_voice)
# Convert output tensor back to numpy for playback
converted_audio_np = converted_audio.detach().cpu().numpy()
# Save to file or return as numpy array
output_file = "output_converted.wav"
librosa.output.write_wav(output_file, converted_audio_np, sr)
return output_file
# Define the Gradio interface
def infer(source_audio, target_voice):
# Call the voice conversion function
result_audio = voice_conversion(source_audio, target_voice)
return result_audio
# Gradio interface with inputs and outputs
iface = gr.Interface(
fn=infer,
inputs=[
gr.Audio(source="microphone", type="filepath", label="Source Audio"),
gr.Dropdown(["Voice1", "Voice2", "Voice3"], label="Target Voice") # Dropdown for target voice options
],
outputs=gr.Audio(type="file", label="Converted Audio"),
title="Retrieval-based Voice Conversion",
description="Convert voice from a source audio to a target voice style."
)
if __name__ == "__main__":
iface.launch()