cupcakes323 commited on
Commit
84d847c
·
verified ·
1 Parent(s): 9b4607e

Create create and train voice model

Browse files
Files changed (1) hide show
  1. create and train voice model +62 -0
create and train voice model ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import torch
4
+ import librosa
5
+
6
+ # URL to the external app.py file
7
+ FILE_URL = "https://huggingface.co/data-science-123/abcd/new/main?filename=app.py"
8
+
9
+ # Fetch the external app.py (or additional files) if needed
10
+ def fetch_external_file(url):
11
+ response = requests.get(url)
12
+ if response.status_code == 200:
13
+ # Save to a local file if needed, or execute dynamically
14
+ with open('external_app.py', 'wb') as file:
15
+ file.write(response.content)
16
+ else:
17
+ raise Exception(f"Failed to fetch the file: {url}")
18
+
19
+ # Fetch the file if you need to load any logic from it
20
+ fetch_external_file(FILE_URL)
21
+
22
+ # Load the pre-trained model (replace with your RVC model path or logic)
23
+ from model import load_model, convert_voice
24
+
25
+ model = load_model("path_to_pretrained_model")
26
+
27
+ # Define the voice conversion logic
28
+ def voice_conversion(source_audio, target_voice):
29
+ # Load and preprocess audio
30
+ y, sr = librosa.load(source_audio)
31
+ input_audio = torch.tensor(y).unsqueeze(0)
32
+
33
+ # Use the model for voice conversion
34
+ converted_audio = convert_voice(model, input_audio, target_voice)
35
+
36
+ # Convert the output tensor to a numpy array and save it
37
+ converted_audio_np = converted_audio.detach().cpu().numpy()
38
+ output_file = "output_converted.wav"
39
+ librosa.output.write_wav(output_file, converted_audio_np, sr)
40
+
41
+ return output_file
42
+
43
+ # Gradio interface
44
+ def infer(source_audio, target_voice):
45
+ # Call voice conversion function
46
+ result_audio = voice_conversion(source_audio, target_voice)
47
+ return result_audio
48
+
49
+ # Create Gradio interface
50
+ iface = gr.Interface(
51
+ fn=infer,
52
+ inputs=[
53
+ gr.Audio(source="microphone", type="filepath", label="Source Audio"),
54
+ gr.Dropdown(["Voice1", "Voice2", "Voice3"], label="Target Voice")
55
+ ],
56
+ outputs=gr.Audio(type="file", label="Converted Audio"),
57
+ title="Retrieval-based Voice Conversion",
58
+ description="Convert voice from a source audio to a target voice style."
59
+ )
60
+
61
+ if __name__ == "__main__":
62
+ iface.launch()