Spaces:
Runtime error
Runtime error
File size: 5,467 Bytes
6a6525c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from __future__ import annotations
import datetime
import os
import pathlib
import shlex
import shutil
import subprocess
import sys
import slugify
import torch
from huggingface_hub import HfApi
from omegaconf import OmegaConf
from uploader import upload
from utils import save_model_card
sys.path.append('Tune-A-Video')
class Trainer:
def __init__(self):
self.checkpoint_dir = pathlib.Path('checkpoints')
self.checkpoint_dir.mkdir(exist_ok=True)
self.log_file = pathlib.Path('log.txt')
self.log_file.touch(exist_ok=True)
def download_base_model(self, base_model_id: str) -> str:
model_dir = self.checkpoint_dir / base_model_id
if not model_dir.exists():
org_name = base_model_id.split('/')[0]
org_dir = self.checkpoint_dir / org_name
org_dir.mkdir(exist_ok=True)
subprocess.run(shlex.split(
f'git clone https://huggingface.co/{base_model_id}'),
cwd=org_dir)
return model_dir.as_posix()
def run(
self,
training_video: str,
training_prompt: str,
output_model_name: str,
overwrite_existing_model: bool,
validation_prompt: str,
base_model: str,
resolution_s: str,
n_steps: int,
learning_rate: float,
gradient_accumulation: int,
seed: int,
fp16: bool,
use_8bit_adam: bool,
checkpointing_steps: int,
validation_epochs: int,
upload_to_hub: bool,
use_private_repo: bool,
delete_existing_repo: bool,
upload_to: str,
pause_space_after_training: bool,
hf_token: str,
) -> None:
if not torch.cuda.is_available():
raise RuntimeError('CUDA is not available.')
if training_video is None:
raise ValueError('You need to upload a video.')
if not training_prompt:
raise ValueError('The training prompt is missing.')
if not validation_prompt:
raise ValueError('The validation prompt is missing.')
resolution = int(resolution_s)
if not output_model_name:
timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
output_model_name = f'tune-a-video-{timestamp}'
output_model_name = slugify.slugify(output_model_name)
repo_dir = pathlib.Path(__file__).parent
output_dir = repo_dir / 'experiments' / output_model_name
if overwrite_existing_model or upload_to_hub:
shutil.rmtree(output_dir, ignore_errors=True)
output_dir.mkdir(parents=True)
config = OmegaConf.load('Tune-A-Video/configs/man-surfing.yaml')
config.pretrained_model_path = self.download_base_model(base_model)
config.output_dir = output_dir.as_posix()
config.train_data.video_path = training_video.name # type: ignore
config.train_data.prompt = training_prompt
config.train_data.n_sample_frames = 8
config.train_data.width = resolution
config.train_data.height = resolution
config.train_data.sample_start_idx = 0
config.train_data.sample_frame_rate = 1
config.validation_data.prompts = [validation_prompt]
config.validation_data.video_length = 8
config.validation_data.width = resolution
config.validation_data.height = resolution
config.validation_data.num_inference_steps = 50
config.validation_data.guidance_scale = 7.5
config.learning_rate = learning_rate
config.gradient_accumulation_steps = gradient_accumulation
config.train_batch_size = 1
config.max_train_steps = n_steps
config.checkpointing_steps = checkpointing_steps
config.validation_steps = validation_epochs
config.seed = seed
config.mixed_precision = 'fp16' if fp16 else ''
config.use_8bit_adam = use_8bit_adam
config_path = output_dir / 'config.yaml'
with open(config_path, 'w') as f:
OmegaConf.save(config, f)
command = f'accelerate launch Tune-A-Video/train_tuneavideo.py --config {config_path}'
with open(self.log_file, 'w') as f:
subprocess.run(shlex.split(command),
stdout=f,
stderr=subprocess.STDOUT,
text=True)
save_model_card(save_dir=output_dir,
base_model=base_model,
training_prompt=training_prompt,
test_prompt=validation_prompt,
test_image_dir='samples')
with open(self.log_file, 'a') as f:
f.write('Training completed!\n')
if upload_to_hub:
upload_message = upload(local_folder_path=output_dir.as_posix(),
target_repo_name=output_model_name,
upload_to=upload_to,
private=use_private_repo,
delete_existing_repo=delete_existing_repo,
hf_token=hf_token)
with open(self.log_file, 'a') as f:
f.write(upload_message)
if pause_space_after_training:
if space_id := os.getenv('SPACE_ID'):
api = HfApi(token=os.getenv('HF_TOKEN') or hf_token)
api.pause_space(repo_id=space_id)
|