anime-image-labeller / anime_image_label_inference.py
ctigges's picture
Added new models trained on 300k image set
ec46c47
#import gradio as gr
import fastbook
fastbook.setup_book()
from fastbook import *
"""
Get the prediction labels and their accuracies, then return the results as a dictionary.
[obj] - tensor matrix containing the predicted accuracy given from the model
[learn] - fastai learner needed to get the labels
[thresh] - minimum accuracy threshold to returning results
"""
def get_pred_classes(obj, learn, thresh):
labels = []
# get list of classes from csv--replace
with open('classes.txt', 'r') as f:
for line in f:
labels.append(line.strip('\n'))
predictions = {}
x=0
for item in obj:
acc= round(item.item(), 3)
if acc > thresh:
predictions[labels[x]] = round(acc, 3)
x+=1
predictions =sorted(predictions.items(), key=lambda x: x[1], reverse=True)
return predictions
def get_x(r): return 'images'/r['img_name']
def get_y(r): return [t for t in r['tags'].split(' ') if t in pop_tags]
learn = load_learner('model-large-basic-10e.pkl')
def predict_single_img(imf, thresh=0.2, learn=learn):
img = PILImage.create(imf)
#img.show() #show image
_, _, pred_pct = learn.predict(img) #predict while ignoring first 2 array inputs
img.show() #show image
return str(get_pred_classes(pred_pct, learn, thresh))
predict_single_img('test/mask.jpeg')
"""
iface = gr.Interface(fn=predict_single_img,
inputs=["image","number"],
outputs="text")
iface.launch()
"""