epoch | \n", "train_loss | \n", "valid_loss | \n", "accuracy_multi | \n", "time | \n", "
---|---|---|---|---|
0 | \n", "0.066560 | \n", "0.060826 | \n", "0.902040 | \n", "11:31 | \n", "
epoch | \n", "train_loss | \n", "valid_loss | \n", "accuracy_multi | \n", "time | \n", "
---|---|---|---|---|
0 | \n", "0.056209 | \n", "0.056293 | \n", "0.897259 | \n", "11:40 | \n", "
1 | \n", "0.055346 | \n", "0.053531 | \n", "0.889566 | \n", "11:42 | \n", "
2 | \n", "0.054351 | \n", "0.049990 | \n", "0.888602 | \n", "11:46 | \n", "
3 | \n", "0.053872 | \n", "0.051940 | \n", "0.891221 | \n", "11:48 | \n", "
4 | \n", "0.053296 | \n", "0.048453 | \n", "0.896868 | \n", "11:50 | \n", "
5 | \n", "0.052622 | \n", "0.048230 | \n", "0.902820 | \n", "11:45 | \n", "
6 | \n", "0.051799 | \n", "0.047883 | \n", "0.902907 | \n", "11:54 | \n", "
7 | \n", "0.051213 | \n", "0.047152 | \n", "0.890515 | \n", "11:49 | \n", "
8 | \n", "0.050991 | \n", "0.046648 | \n", "0.897730 | \n", "11:40 | \n", "
9 | \n", "0.050106 | \n", "0.046447 | \n", "0.894449 | \n", "11:41 | \n", "
10 | \n", "0.050308 | \n", "0.046070 | \n", "0.895217 | \n", "11:38 | \n", "
11 | \n", "0.050209 | \n", "0.045888 | \n", "0.897831 | \n", "11:33 | \n", "
12 | \n", "0.049641 | \n", "0.045527 | \n", "0.904834 | \n", "11:33 | \n", "
13 | \n", "0.049407 | \n", "0.045321 | \n", "0.891076 | \n", "11:33 | \n", "
\n", "\n", "
epoch | \n", "train_loss | \n", "valid_loss | \n", "accuracy_multi | \n", "time | \n", "
---|
\n", "\n", "