Spaces:
Sleeping
Sleeping
Clement Vachet
commited on
Commit
·
51588cf
0
Parent(s):
Initial commit
Browse files- .gitignore +165 -0
- app.py +116 -0
- utils.py +86 -0
.gitignore
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Environment file
|
2 |
+
config_api.env
|
3 |
+
|
4 |
+
# Byte-compiled / optimized / DLL files
|
5 |
+
__pycache__/
|
6 |
+
*.py[cod]
|
7 |
+
*$py.class
|
8 |
+
|
9 |
+
# C extensions
|
10 |
+
*.so
|
11 |
+
|
12 |
+
# Distribution / packaging
|
13 |
+
.Python
|
14 |
+
build/
|
15 |
+
develop-eggs/
|
16 |
+
dist/
|
17 |
+
downloads/
|
18 |
+
eggs/
|
19 |
+
.eggs/
|
20 |
+
lib/
|
21 |
+
lib64/
|
22 |
+
parts/
|
23 |
+
sdist/
|
24 |
+
var/
|
25 |
+
wheels/
|
26 |
+
share/python-wheels/
|
27 |
+
*.egg-info/
|
28 |
+
.installed.cfg
|
29 |
+
*.egg
|
30 |
+
MANIFEST
|
31 |
+
|
32 |
+
# PyInstaller
|
33 |
+
# Usually these files are written by a python script from a template
|
34 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
35 |
+
*.manifest
|
36 |
+
*.spec
|
37 |
+
|
38 |
+
# Installer logs
|
39 |
+
pip-log.txt
|
40 |
+
pip-delete-this-directory.txt
|
41 |
+
|
42 |
+
# Unit test / coverage reports
|
43 |
+
htmlcov/
|
44 |
+
.tox/
|
45 |
+
.nox/
|
46 |
+
.coverage
|
47 |
+
.coverage.*
|
48 |
+
.cache
|
49 |
+
nosetests.xml
|
50 |
+
coverage.xml
|
51 |
+
*.cover
|
52 |
+
*.py,cover
|
53 |
+
.hypothesis/
|
54 |
+
.pytest_cache/
|
55 |
+
cover/
|
56 |
+
|
57 |
+
# Translations
|
58 |
+
*.mo
|
59 |
+
*.pot
|
60 |
+
|
61 |
+
# Django stuff:
|
62 |
+
*.log
|
63 |
+
local_settings.py
|
64 |
+
db.sqlite3
|
65 |
+
db.sqlite3-journal
|
66 |
+
|
67 |
+
# Flask stuff:
|
68 |
+
instance/
|
69 |
+
.webassets-cache
|
70 |
+
|
71 |
+
# Scrapy stuff:
|
72 |
+
.scrapy
|
73 |
+
|
74 |
+
# Sphinx documentation
|
75 |
+
docs/_build/
|
76 |
+
|
77 |
+
# PyBuilder
|
78 |
+
.pybuilder/
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
# For a library or package, you might want to ignore these files since the code is
|
90 |
+
# intended to run in multiple environments; otherwise, check them in:
|
91 |
+
# .python-version
|
92 |
+
|
93 |
+
# pipenv
|
94 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
95 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
96 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
97 |
+
# install all needed dependencies.
|
98 |
+
#Pipfile.lock
|
99 |
+
|
100 |
+
# poetry
|
101 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
102 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
103 |
+
# commonly ignored for libraries.
|
104 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
105 |
+
#poetry.lock
|
106 |
+
|
107 |
+
# pdm
|
108 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
109 |
+
#pdm.lock
|
110 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
111 |
+
# in version control.
|
112 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
113 |
+
.pdm.toml
|
114 |
+
.pdm-python
|
115 |
+
.pdm-build/
|
116 |
+
|
117 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
118 |
+
__pypackages__/
|
119 |
+
|
120 |
+
# Celery stuff
|
121 |
+
celerybeat-schedule
|
122 |
+
celerybeat.pid
|
123 |
+
|
124 |
+
# SageMath parsed files
|
125 |
+
*.sage.py
|
126 |
+
|
127 |
+
# Environments
|
128 |
+
.env
|
129 |
+
.venv
|
130 |
+
env/
|
131 |
+
venv/
|
132 |
+
ENV/
|
133 |
+
env.bak/
|
134 |
+
venv.bak/
|
135 |
+
|
136 |
+
# Spyder project settings
|
137 |
+
.spyderproject
|
138 |
+
.spyproject
|
139 |
+
|
140 |
+
# Rope project settings
|
141 |
+
.ropeproject
|
142 |
+
|
143 |
+
# mkdocs documentation
|
144 |
+
/site
|
145 |
+
|
146 |
+
# mypy
|
147 |
+
.mypy_cache/
|
148 |
+
.dmypy.json
|
149 |
+
dmypy.json
|
150 |
+
|
151 |
+
# Pyre type checker
|
152 |
+
.pyre/
|
153 |
+
|
154 |
+
# pytype static type analyzer
|
155 |
+
.pytype/
|
156 |
+
|
157 |
+
# Cython debug symbols
|
158 |
+
cython_debug/
|
159 |
+
|
160 |
+
# PyCharm
|
161 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
162 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
163 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
164 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
165 |
+
.idea/
|
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
import utils
|
7 |
+
|
8 |
+
from dotenv import load_dotenv, find_dotenv
|
9 |
+
|
10 |
+
# List of ML models
|
11 |
+
list_models = ["facebook/detr-resnet-50", "facebook/detr-resnet-101", "hustvl/yolos-tiny", "hustvl/yolos-small"]
|
12 |
+
list_models_simple = [os.path.basename(model) for model in list_models]
|
13 |
+
|
14 |
+
# ECS APIs
|
15 |
+
AWS_DETR_URL = None
|
16 |
+
AWS_YOLOS_URL = None
|
17 |
+
|
18 |
+
|
19 |
+
# Initialize API URLs from env file or global settings
|
20 |
+
def initialize_api_endpoints():
|
21 |
+
|
22 |
+
env_path = find_dotenv('config_api.env')
|
23 |
+
if env_path:
|
24 |
+
load_dotenv(dotenv_path=env_path)
|
25 |
+
print("config_api.env file loaded successfully.")
|
26 |
+
else:
|
27 |
+
print("config_api.env file not found.")
|
28 |
+
|
29 |
+
# Use of AWS ECS endpoint or local container by default
|
30 |
+
global AWS_DETR_URL, AWS_YOLOS_URL
|
31 |
+
AWS_DETR_URL = os.getenv("AWS_DETR_URL", default="http://0.0.0.0:8000")
|
32 |
+
AWS_YOLOS_URL = os.getenv("AWS_YOLOS_URL", default="http://0.0.0.0:8001")
|
33 |
+
|
34 |
+
|
35 |
+
# Retrieve correct endpoint based on model_type
|
36 |
+
def retrieve_api_endpoint(model_type):
|
37 |
+
if "detr" in model_type:
|
38 |
+
API_URL = AWS_DETR_URL
|
39 |
+
else:
|
40 |
+
API_URL = AWS_YOLOS_URL
|
41 |
+
|
42 |
+
return API_URL
|
43 |
+
|
44 |
+
|
45 |
+
#@spaces.GPU
|
46 |
+
def detect(image_path, model_id, threshold):
|
47 |
+
print("\n Object detection...")
|
48 |
+
print("\t ML model:", list_models[model_id])
|
49 |
+
|
50 |
+
with open(image_path, 'rb') as image_file:
|
51 |
+
image_bytes = image_file.read()
|
52 |
+
|
53 |
+
API_URL = retrieve_api_endpoint(list_models_simple[model_id])
|
54 |
+
|
55 |
+
# API Call for object prediction with model type as query parameter
|
56 |
+
API_Endpoint = API_URL + "/api/v1/detect" + "?model=" + list_models_simple[model_id]
|
57 |
+
print("\t API_Endpoint: ", API_Endpoint)
|
58 |
+
|
59 |
+
response = requests.post(API_Endpoint, files={"image": image_bytes})
|
60 |
+
if response.status_code == 200:
|
61 |
+
# Process the response
|
62 |
+
response_string = response.json()
|
63 |
+
response_dict = json.loads(response_string)
|
64 |
+
print('\t API response', response_string)
|
65 |
+
else:
|
66 |
+
response_dict = {"Error": response.status_code}
|
67 |
+
gr.Error(f"\t API Error: {response.status_code}")
|
68 |
+
|
69 |
+
# Generate gradio output components: image and json
|
70 |
+
output_json, output_pil_img = utils.generate_gradio_outputs(image_path, response_dict, threshold)
|
71 |
+
|
72 |
+
return output_json, output_pil_img
|
73 |
+
|
74 |
+
|
75 |
+
def demo():
|
76 |
+
initialize_api_endpoints()
|
77 |
+
with gr.Blocks(theme="base") as demo:
|
78 |
+
gr.Markdown("# Object detection task - use of ECS endpoints")
|
79 |
+
gr.Markdown(
|
80 |
+
"""
|
81 |
+
This web application uses transformer models to detect objects on images.
|
82 |
+
Machine learning models were trained on the COCO dataset.
|
83 |
+
You can load an image and see the predictions for the objects detected.
|
84 |
+
|
85 |
+
Note: This web application uses AWS ECS endpoints as a back-end APIs to run these ML models.
|
86 |
+
"""
|
87 |
+
)
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
with gr.Column():
|
91 |
+
model_id = gr.Radio(list_models, \
|
92 |
+
label="Detection models", value=list_models[0], type="index", info="Choose your detection model")
|
93 |
+
with gr.Column():
|
94 |
+
threshold = gr.Slider(0, 1.0, value=0.9, label='Detection threshold', info="Choose your detection threshold")
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
input_image = gr.Image(label="Input image", type="filepath")
|
98 |
+
output_image = gr.Image(label="Output image", type="pil")
|
99 |
+
output_json = gr.JSON(label="JSON output", min_height=240, max_height=300)
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
submit_btn = gr.Button("Submit")
|
103 |
+
clear_button = gr.ClearButton()
|
104 |
+
|
105 |
+
gr.Examples(['samples/savanna.jpg', 'samples/boats.jpg'], inputs=input_image)
|
106 |
+
|
107 |
+
submit_btn.click(fn=detect, inputs=[input_image, model_id, threshold], outputs=[output_json, output_image])
|
108 |
+
clear_button.click(lambda: [None, None, None], \
|
109 |
+
inputs=None, \
|
110 |
+
outputs=[input_image, output_image, output_json], \
|
111 |
+
queue=False)
|
112 |
+
|
113 |
+
demo.queue().launch(debug=True)
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
demo()
|
utils.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import io
|
4 |
+
|
5 |
+
|
6 |
+
# COCO classes
|
7 |
+
CLASSES = [
|
8 |
+
'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
9 |
+
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
|
10 |
+
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
|
11 |
+
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
|
12 |
+
'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
|
13 |
+
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
|
14 |
+
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
|
15 |
+
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
|
16 |
+
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
|
17 |
+
'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
|
18 |
+
'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
|
19 |
+
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
|
20 |
+
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
|
21 |
+
'toothbrush'
|
22 |
+
]
|
23 |
+
COLORS = [
|
24 |
+
[0.000, 0.447, 0.741],
|
25 |
+
[0.850, 0.325, 0.098],
|
26 |
+
[0.929, 0.694, 0.125],
|
27 |
+
[0.494, 0.184, 0.556],
|
28 |
+
[0.466, 0.674, 0.188],
|
29 |
+
[0.301, 0.745, 0.933],
|
30 |
+
]
|
31 |
+
|
32 |
+
|
33 |
+
# Update JSON dictionary with rounded values and classes
|
34 |
+
def generate_output_json(json_dict):
|
35 |
+
json_dict['scores'] = [round(score, 3) for score in json_dict['scores']]
|
36 |
+
json_dict['boxes'] = [[round(coord, 3) for coord in box] for box in json_dict['boxes']]
|
37 |
+
json_dict['labels'] = [CLASSES[label] for label in json_dict['labels']]
|
38 |
+
return json_dict
|
39 |
+
|
40 |
+
|
41 |
+
# Generate matplotlib figure from prediction scores and boxes
|
42 |
+
def generate_output_figure(image_path, results, threshold):
|
43 |
+
pil_img = Image.open(image_path)
|
44 |
+
|
45 |
+
plt.figure(figsize=(16, 10))
|
46 |
+
plt.imshow(pil_img)
|
47 |
+
ax = plt.gca()
|
48 |
+
colors = COLORS * 100
|
49 |
+
|
50 |
+
print("\t Detailed information...")
|
51 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
52 |
+
#box = [round(i, 2) for i in box]
|
53 |
+
print(
|
54 |
+
f"\t\t Detected {label} with confidence "
|
55 |
+
f"{score} at location {box}"
|
56 |
+
)
|
57 |
+
|
58 |
+
if score > threshold:
|
59 |
+
c = COLORS[hash(label) % len(COLORS)]
|
60 |
+
ax.add_patch(
|
61 |
+
plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3)
|
62 |
+
)
|
63 |
+
text = f"{label}: {score:0.2f}"
|
64 |
+
ax.text(box[0], box[1], text, fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
|
65 |
+
plt.axis("off")
|
66 |
+
|
67 |
+
return plt.gcf()
|
68 |
+
|
69 |
+
|
70 |
+
# Generate PIL image from matplotlib figure
|
71 |
+
def generate_output_image(output_figure):
|
72 |
+
# Convert matplotlib figure to PIL image
|
73 |
+
#output_figure = plt.gcf()
|
74 |
+
buf = io.BytesIO()
|
75 |
+
output_figure.savefig(buf, bbox_inches="tight")
|
76 |
+
buf.seek(0)
|
77 |
+
output_pil_img = Image.open(buf)
|
78 |
+
|
79 |
+
return output_pil_img
|
80 |
+
|
81 |
+
|
82 |
+
def generate_gradio_outputs(image_path, response_dict, threshold):
|
83 |
+
output_json = generate_output_json(response_dict)
|
84 |
+
output_figure = generate_output_figure(image_path, output_json, threshold)
|
85 |
+
output_pil_img = generate_output_image(output_figure)
|
86 |
+
return output_json, output_pil_img
|