--- title: Object Detection emoji: 🖼 colorFrom: green colorTo: purple sdk: gradio sdk_version: 5.5.0 app_file: app.py pinned: false short_description: Object detection via Gradio --- # Object detection Aim: AI-driven object detection (on COCO image dataset) Machine learning models: - facebook/detr-resnet-50, - facebook/detr-resnet-101, - hustvl/yolos-tiny, - hustvl/yolos-small ### Table of contents: - [Execution via command line](#1-execution-via-command-line) - [Execution via User Interface ](#2-execution-via-user-interface) - [Execution via Gradio client API](#3-execution-via-gradio-client-api) - [Deployment on Hugging Face](#4-deployment-on-hugging-face) - [Deployment on Docker Hub](#5-deployment-on-docker-hub) ## 1. Execution via command line ### 1.1. Use of torch library > python detect_torch.py ### 1.2. Use of transformers library > python detect_transformers.py ### 1.3. Use of HuggingFace pipeline library > python detect_pipeline.py ## 2. Execution via User Interface Use of Gradio library for web interface Command line: > python app.py Note: The Gradio app should now be accessible at http://localhost:7860 ## 3. Execution via Gradio client API Note: Use of existing Gradio server (running locally, in a Docker container, or in the cloud as a HuggingFace space or AWS) ### 3.1. Creation of docker container Command lines: > sudo docker build -t gradio-app . > sudo docker run -p 7860:7860 gradio-app The Gradio app should now be accessible at http://localhost:7860 ### 3.2. Direct inference via API Command line: > python inference_API.py ## 4. Deployment on Hugging Face This web application is available on Hugging Face, via a Gradio space URL: https://huggingface.co/spaces/cvachet/object_detection_gradio ## 5. Deployment on Docker Hub This web application is available as a container on Docker Hub URL: https://hub.docker.com/r/cvachet/object-detection-gradio