Spaces:
Build error
Build error
File size: 12,535 Bytes
1ed7deb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import argparse, os, sys, glob, math, time
import torch
import numpy as np
from omegaconf import OmegaConf
import streamlit as st
from streamlit import caching
from PIL import Image
from main import instantiate_from_config, DataModuleFromConfig
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
rescale = lambda x: (x + 1.) / 2.
def bchw_to_st(x):
return rescale(x.detach().cpu().numpy().transpose(0,2,3,1))
def save_img(xstart, fname):
I = (xstart.clip(0,1)[0]*255).astype(np.uint8)
Image.fromarray(I).save(fname)
def get_interactive_image(resize=False):
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"])
if image is not None:
image = Image.open(image)
if not image.mode == "RGB":
image = image.convert("RGB")
image = np.array(image).astype(np.uint8)
print("upload image shape: {}".format(image.shape))
img = Image.fromarray(image)
if resize:
img = img.resize((256, 256))
image = np.array(img)
return image
def single_image_to_torch(x, permute=True):
assert x is not None, "Please provide an image through the upload function"
x = np.array(x)
x = torch.FloatTensor(x/255.*2. - 1.)[None,...]
if permute:
x = x.permute(0, 3, 1, 2)
return x
def pad_to_M(x, M):
hp = math.ceil(x.shape[2]/M)*M-x.shape[2]
wp = math.ceil(x.shape[3]/M)*M-x.shape[3]
x = torch.nn.functional.pad(x, (0,wp,0,hp,0,0,0,0))
return x
@torch.no_grad()
def run_conditional(model, dsets):
if len(dsets.datasets) > 1:
split = st.sidebar.radio("Split", sorted(dsets.datasets.keys()))
dset = dsets.datasets[split]
else:
dset = next(iter(dsets.datasets.values()))
batch_size = 1
start_index = st.sidebar.number_input("Example Index (Size: {})".format(len(dset)), value=0,
min_value=0,
max_value=len(dset)-batch_size)
indices = list(range(start_index, start_index+batch_size))
example = default_collate([dset[i] for i in indices])
x = model.get_input("image", example).to(model.device)
cond_key = model.cond_stage_key
c = model.get_input(cond_key, example).to(model.device)
scale_factor = st.sidebar.slider("Scale Factor", min_value=0.5, max_value=4.0, step=0.25, value=1.00)
if scale_factor != 1.0:
x = torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="bicubic")
c = torch.nn.functional.interpolate(c, scale_factor=scale_factor, mode="bicubic")
quant_z, z_indices = model.encode_to_z(x)
quant_c, c_indices = model.encode_to_c(c)
cshape = quant_z.shape
xrec = model.first_stage_model.decode(quant_z)
st.write("image: {}".format(x.shape))
st.image(bchw_to_st(x), clamp=True, output_format="PNG")
st.write("image reconstruction: {}".format(xrec.shape))
st.image(bchw_to_st(xrec), clamp=True, output_format="PNG")
if cond_key == "segmentation":
# get image from segmentation mask
num_classes = c.shape[1]
c = torch.argmax(c, dim=1, keepdim=True)
c = torch.nn.functional.one_hot(c, num_classes=num_classes)
c = c.squeeze(1).permute(0, 3, 1, 2).float()
c = model.cond_stage_model.to_rgb(c)
st.write(f"{cond_key}: {tuple(c.shape)}")
st.image(bchw_to_st(c), clamp=True, output_format="PNG")
idx = z_indices
half_sample = st.sidebar.checkbox("Image Completion", value=False)
if half_sample:
start = idx.shape[1]//2
else:
start = 0
idx[:,start:] = 0
idx = idx.reshape(cshape[0],cshape[2],cshape[3])
start_i = start//cshape[3]
start_j = start %cshape[3]
if not half_sample and quant_z.shape == quant_c.shape:
st.info("Setting idx to c_indices")
idx = c_indices.clone().reshape(cshape[0],cshape[2],cshape[3])
cidx = c_indices
cidx = cidx.reshape(quant_c.shape[0],quant_c.shape[2],quant_c.shape[3])
xstart = model.decode_to_img(idx[:,:cshape[2],:cshape[3]], cshape)
st.image(bchw_to_st(xstart), clamp=True, output_format="PNG")
temperature = st.number_input("Temperature", value=1.0)
top_k = st.number_input("Top k", value=100)
sample = st.checkbox("Sample", value=True)
update_every = st.number_input("Update every", value=75)
st.text(f"Sampling shape ({cshape[2]},{cshape[3]})")
animate = st.checkbox("animate")
if animate:
import imageio
outvid = "sampling.mp4"
writer = imageio.get_writer(outvid, fps=25)
elapsed_t = st.empty()
info = st.empty()
st.text("Sampled")
if st.button("Sample"):
output = st.empty()
start_t = time.time()
for i in range(start_i,cshape[2]-0):
if i <= 8:
local_i = i
elif cshape[2]-i < 8:
local_i = 16-(cshape[2]-i)
else:
local_i = 8
for j in range(start_j,cshape[3]-0):
if j <= 8:
local_j = j
elif cshape[3]-j < 8:
local_j = 16-(cshape[3]-j)
else:
local_j = 8
i_start = i-local_i
i_end = i_start+16
j_start = j-local_j
j_end = j_start+16
elapsed_t.text(f"Time: {time.time() - start_t} seconds")
info.text(f"Step: ({i},{j}) | Local: ({local_i},{local_j}) | Crop: ({i_start}:{i_end},{j_start}:{j_end})")
patch = idx[:,i_start:i_end,j_start:j_end]
patch = patch.reshape(patch.shape[0],-1)
cpatch = cidx[:, i_start:i_end, j_start:j_end]
cpatch = cpatch.reshape(cpatch.shape[0], -1)
patch = torch.cat((cpatch, patch), dim=1)
logits,_ = model.transformer(patch[:,:-1])
logits = logits[:, -256:, :]
logits = logits.reshape(cshape[0],16,16,-1)
logits = logits[:,local_i,local_j,:]
logits = logits/temperature
if top_k is not None:
logits = model.top_k_logits(logits, top_k)
# apply softmax to convert to probabilities
probs = torch.nn.functional.softmax(logits, dim=-1)
# sample from the distribution or take the most likely
if sample:
ix = torch.multinomial(probs, num_samples=1)
else:
_, ix = torch.topk(probs, k=1, dim=-1)
idx[:,i,j] = ix
if (i*cshape[3]+j)%update_every==0:
xstart = model.decode_to_img(idx[:, :cshape[2], :cshape[3]], cshape,)
xstart = bchw_to_st(xstart)
output.image(xstart, clamp=True, output_format="PNG")
if animate:
writer.append_data((xstart[0]*255).clip(0, 255).astype(np.uint8))
xstart = model.decode_to_img(idx[:,:cshape[2],:cshape[3]], cshape)
xstart = bchw_to_st(xstart)
output.image(xstart, clamp=True, output_format="PNG")
#save_img(xstart, "full_res_sample.png")
if animate:
writer.close()
st.video(outvid)
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--resume",
type=str,
nargs="?",
help="load from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-c",
"--config",
nargs="?",
metavar="single_config.yaml",
help="path to single config. If specified, base configs will be ignored "
"(except for the last one if left unspecified).",
const=True,
default="",
)
parser.add_argument(
"--ignore_base_data",
action="store_true",
help="Ignore data specification from base configs. Useful if you want "
"to specify a custom datasets on the command line.",
)
return parser
def load_model_from_config(config, sd, gpu=True, eval_mode=True):
if "ckpt_path" in config.params:
st.warning("Deleting the restore-ckpt path from the config...")
config.params.ckpt_path = None
if "downsample_cond_size" in config.params:
st.warning("Deleting downsample-cond-size from the config and setting factor=0.5 instead...")
config.params.downsample_cond_size = -1
config.params["downsample_cond_factor"] = 0.5
try:
if "ckpt_path" in config.params.first_stage_config.params:
config.params.first_stage_config.params.ckpt_path = None
st.warning("Deleting the first-stage restore-ckpt path from the config...")
if "ckpt_path" in config.params.cond_stage_config.params:
config.params.cond_stage_config.params.ckpt_path = None
st.warning("Deleting the cond-stage restore-ckpt path from the config...")
except:
pass
model = instantiate_from_config(config)
if sd is not None:
missing, unexpected = model.load_state_dict(sd, strict=False)
st.info(f"Missing Keys in State Dict: {missing}")
st.info(f"Unexpected Keys in State Dict: {unexpected}")
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def get_data(config):
# get data
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup()
return data
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def load_model_and_dset(config, ckpt, gpu, eval_mode):
# get data
dsets = get_data(config) # calls data.config ...
# now load the specified checkpoint
if ckpt:
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model,
pl_sd["state_dict"],
gpu=gpu,
eval_mode=eval_mode)["model"]
return dsets, model, global_step
if __name__ == "__main__":
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
ckpt = None
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
try:
idx = len(paths)-paths[::-1].index("logs")+1
except ValueError:
idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
logdir = "/".join(paths[:idx])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
print(f"logdir:{logdir}")
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*-project.yaml")))
opt.base = base_configs+opt.base
if opt.config:
if type(opt.config) == str:
opt.base = [opt.config]
else:
opt.base = [opt.base[-1]]
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
if opt.ignore_base_data:
for config in configs:
if hasattr(config, "data"): del config["data"]
config = OmegaConf.merge(*configs, cli)
st.sidebar.text(ckpt)
gs = st.sidebar.empty()
gs.text(f"Global step: ?")
st.sidebar.text("Options")
#gpu = st.sidebar.checkbox("GPU", value=True)
gpu = True
#eval_mode = st.sidebar.checkbox("Eval Mode", value=True)
eval_mode = True
#show_config = st.sidebar.checkbox("Show Config", value=False)
show_config = False
if show_config:
st.info("Checkpoint: {}".format(ckpt))
st.json(OmegaConf.to_container(config))
dsets, model, global_step = load_model_and_dset(config, ckpt, gpu, eval_mode)
gs.text(f"Global step: {global_step}")
run_conditional(model, dsets)
|