zero123-live / app.py
basilevh's picture
slider change is not always fully up to date, so keep vis button without queue
d81cc17
raw
history blame
No virus
28.7 kB
'''
conda activate zero123
cd zero123
python gradio_new.py 0
'''
import diffusers # 0.12.1
import math
import fire
import gradio as gr
import lovely_numpy
import lovely_tensors
import numpy as np
import os
import plotly.express as px
import plotly.graph_objects as go
import rich
import sys
import time
import torch
from contextlib import nullcontext
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from einops import rearrange
from functools import partial
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import create_carvekit_interface, load_and_preprocess, instantiate_from_config
from lovely_numpy import lo
from omegaconf import OmegaConf
from PIL import Image
from rich import print
from transformers import AutoFeatureExtractor
from torch import autocast
from torchvision import transforms
_SHOW_DESC = True
_SHOW_INTERMEDIATE = False
# _SHOW_INTERMEDIATE = True
_GPU_INDEX = 0
# _GPU_INDEX = 2
# _TITLE = 'Zero-Shot Control of Camera Viewpoints within a Single Image'
_TITLE = 'Zero-1-to-3: Zero-shot One Image to 3D Object'
# This demo allows you to generate novel viewpoints of an object depicted in an input image using a fine-tuned version of Stable Diffusion.
_DESCRIPTION = '''
This live demo allows you to control camera rotation and thereby generate novel viewpoints of an object within a single image.
It is based on Stable Diffusion. Check out our [project webpage](https://zero123.cs.columbia.edu/) and [paper](https://arxiv.org/pdf/2303.11328.pdf) if you want to learn more about the method!
Note that this model is not intended for images of humans or faces, and is unlikely to work well for them.
'''
_ARTICLE = 'See uses.md'
def load_model_from_config(config, ckpt, device, verbose=False):
print(f'Loading model from {ckpt}')
pl_sd = torch.load(ckpt, map_location='cpu')
if 'global_step' in pl_sd:
print(f'Global Step: {pl_sd["global_step"]}')
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print('missing keys:')
print(m)
if len(u) > 0 and verbose:
print('unexpected keys:')
print(u)
model.to(device)
model.eval()
return model
@torch.no_grad()
def sample_model(input_im, model, sampler, precision, h, w, ddim_steps, n_samples, scale,
ddim_eta, x, y, z):
precision_scope = autocast if precision == 'autocast' else nullcontext
with precision_scope('cuda'):
with model.ema_scope():
c = model.get_learned_conditioning(input_im).tile(n_samples, 1, 1)
T = torch.tensor([math.radians(x), math.sin(
math.radians(y)), math.cos(math.radians(y)), z])
T = T[None, None, :].repeat(n_samples, 1, 1).to(c.device)
c = torch.cat([c, T], dim=-1)
c = model.cc_projection(c)
cond = {}
cond['c_crossattn'] = [c]
c_concat = model.encode_first_stage((input_im.to(c.device))).mode().detach()
cond['c_concat'] = [model.encode_first_stage((input_im.to(c.device))).mode().detach()
.repeat(n_samples, 1, 1, 1)]
if scale != 1.0:
uc = {}
uc['c_concat'] = [torch.zeros(n_samples, 4, h // 8, w // 8).to(c.device)]
uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)]
else:
uc = None
shape = [4, h // 8, w // 8]
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=cond,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=None)
print(samples_ddim.shape)
# samples_ddim = torch.nn.functional.interpolate(samples_ddim, 64, mode='nearest', antialias=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
return torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0).cpu()
class CameraVisualizer:
def __init__(self, gradio_plot):
self._gradio_plot = gradio_plot
self._fig = None
self._polar = 0.0
self._azimuth = 0.0
self._radius = 0.0
self._raw_image = None
self._8bit_image = None
self._image_colorscale = None
def polar_change(self, value):
self._polar = value
# return self.update_figure()
def azimuth_change(self, value):
self._azimuth = value
# return self.update_figure()
def radius_change(self, value):
self._radius = value
# return self.update_figure()
def encode_image(self, raw_image):
'''
:param raw_image (H, W, 3) array of uint8 in [0, 255].
'''
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
self._raw_image = raw_image
self._8bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
# self._8bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
# 'P', palette='WEB', dither=None)
self._image_colorscale = [
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
# return self.update_figure()
def update_figure(self):
fig = go.Figure()
if self._raw_image is not None:
(H, W, C) = self._raw_image.shape
x = np.zeros((H, W))
(y, z) = np.meshgrid(np.linspace(-1.0, 1.0, W), np.linspace(1.0, -1.0, H) * H / W)
print('x:', lo(x))
print('y:', lo(y))
print('z:', lo(z))
fig.add_trace(go.Surface(
x=x, y=y, z=z,
surfacecolor=self._8bit_image,
cmin=0,
cmax=255,
colorscale=self._image_colorscale,
showscale=False,
lighting_diffuse=1.0,
lighting_ambient=1.0,
lighting_fresnel=1.0,
lighting_roughness=1.0,
lighting_specular=0.3))
scene_bounds = 3.5
base_radius = 2.5
zoom_scale = 1.5 # Note that input radius offset is in [-0.5, 0.5].
fov_deg = 50.0
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
input_cone = calc_cam_cone_pts_3d(
0.0, 0.0, base_radius, fov_deg) # (5, 3).
output_cone = calc_cam_cone_pts_3d(
self._polar, self._azimuth, base_radius + self._radius * zoom_scale, fov_deg) # (5, 3).
# print('input_cone:', lo(input_cone).v)
# print('output_cone:', lo(output_cone).v)
for (cone, clr, legend) in [(input_cone, 'green', 'Input view'),
(output_cone, 'blue', 'Target view')]:
for (i, edge) in enumerate(edges):
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
fig.add_trace(go.Scatter3d(
x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
line=dict(color=clr, width=3),
name=legend, showlegend=(i == 0)))
# text=(legend if i == 0 else None),
# textposition='bottom center'))
# hoverinfo='text',
# hovertext='hovertext'))
# Add label.
if cone[0, 2] <= base_radius / 2.0:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
mode='text', text=legend, textposition='bottom center'))
else:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
mode='text', text=legend, textposition='top center'))
# look at center of scene
fig.update_layout(
# width=640,
# height=480,
# height=400,
height=360,
autosize=True,
hovermode=False,
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
showlegend=True,
legend=dict(
yanchor='bottom',
y=0.01,
xanchor='right',
x=0.99,
),
scene=dict(
aspectmode='manual',
aspectratio=dict(x=1, y=1, z=1.0),
camera=dict(
eye=dict(x=base_radius - 1.6, y=0.0, z=0.6),
center=dict(x=0.0, y=0.0, z=0.0),
up=dict(x=0.0, y=0.0, z=1.0)),
xaxis_title='',
yaxis_title='',
zaxis_title='',
xaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks=''),
yaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks=''),
zaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=False,
showgrid=True,
zeroline=False,
showbackground=True,
showspikes=False,
showline=False,
ticks='')))
self._fig = fig
return fig
def preprocess_image(models, input_im, preprocess):
'''
:param input_im (PIL Image).
:return input_im (H, W, 3) array in [0, 1].
'''
print('old input_im:', input_im.size)
start_time = time.time()
if preprocess:
input_im = load_and_preprocess(models['carvekit'], input_im)
input_im = (input_im / 255.0).astype(np.float32)
# (H, W, 3) array in [0, 1].
else:
input_im = input_im.resize([256, 256], Image.Resampling.LANCZOS)
input_im = np.asarray(input_im, dtype=np.float32) / 255.0
# (H, W, 4) array in [0, 1].
# old method: thresholding background, very important
# input_im[input_im[:, :, -1] <= 0.9] = [1., 1., 1., 1.]
# new method: apply correct method of compositing to avoid sudden transitions / thresholding
# (smoothly transition foreground to white background based on alpha values)
alpha = input_im[:, :, 3:4]
white_im = np.ones_like(input_im)
input_im = alpha * input_im + (1.0 - alpha) * white_im
input_im = input_im[:, :, 0:3]
# (H, W, 3) array in [0, 1].
print(f'Infer foreground mask (preprocess_image) took {time.time() - start_time:.3f}s.')
print('new input_im:', lo(input_im))
return input_im
def main_run(models, device, cam_vis, return_what,
x=0.0, y=0.0, z=0.0,
raw_im=None, preprocess=True,
scale=3.0, n_samples=4, ddim_steps=50, ddim_eta=1.0,
precision='fp32', h=256, w=256):
'''
:param raw_im (PIL Image).
'''
raw_im.thumbnail([1536, 1536], Image.Resampling.LANCZOS)
safety_checker_input = models['clip_fe'](raw_im, return_tensors='pt').to(device)
(image, has_nsfw_concept) = models['nsfw'](
images=np.ones((1, 3)), clip_input=safety_checker_input.pixel_values)
print('has_nsfw_concept:', has_nsfw_concept)
if np.any(has_nsfw_concept):
print('NSFW content detected.')
to_return = [None] * 10
description = ('### <span style="color:red"> Unfortunately, '
'potential NSFW content was detected, '
'which is not supported by our model. '
'Please try again with a different image. </span>')
if 'angles' in return_what:
to_return[0] = 0.0
to_return[1] = 0.0
to_return[2] = 0.0
to_return[3] = description
else:
to_return[0] = description
return to_return
else:
print('Safety check passed.')
input_im = preprocess_image(models, raw_im, preprocess)
# if np.random.rand() < 0.3:
# description = ('Unfortunately, a human, a face, or potential NSFW content was detected, '
# 'which is not supported by our model.')
# if vis_only:
# return (None, None, description)
# else:
# return (None, None, None, description)
show_in_im1 = (input_im * 255.0).astype(np.uint8)
show_in_im2 = Image.fromarray(show_in_im1)
if 'rand' in return_what:
x = int(np.round(np.arcsin(np.random.uniform(-1.0, 1.0)) * 160.0 / np.pi)) # [-80, 80].
y = int(np.round(np.random.uniform(-150.0, 150.0)))
z = 0.0
cam_vis.polar_change(x)
cam_vis.azimuth_change(y)
cam_vis.radius_change(z)
cam_vis.encode_image(show_in_im1)
new_fig = cam_vis.update_figure()
if 'vis' in return_what:
description = ('The viewpoints are visualized on the top right. '
'Click Run Generation to update the results on the bottom right.')
if 'angles' in return_what:
return (x, y, z, description, new_fig, show_in_im2)
else:
return (description, new_fig, show_in_im2)
elif 'gen' in return_what:
input_im = transforms.ToTensor()(input_im).unsqueeze(0).to(device)
input_im = input_im * 2 - 1
input_im = transforms.functional.resize(input_im, [h, w])
sampler = DDIMSampler(models['turncam'])
# used_x = -x # NOTE: Polar makes more sense in Basile's opinion this way!
used_x = x # NOTE: Set this way for consistency.
x_samples_ddim = sample_model(input_im, models['turncam'], sampler, precision, h, w,
ddim_steps, n_samples, scale, ddim_eta, used_x, y, z)
output_ims = []
for x_sample in x_samples_ddim:
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
output_ims.append(Image.fromarray(x_sample.astype(np.uint8)))
description = None
if 'angles' in return_what:
return (x, y, z, description, new_fig, show_in_im2, output_ims)
else:
return (description, new_fig, show_in_im2, output_ims)
def calc_cam_cone_pts_3d(polar_deg, azimuth_deg, radius_m, fov_deg):
'''
:param polar_deg (float).
:param azimuth_deg (float).
:param radius_m (float).
:param fov_deg (float).
:return (5, 3) array of float with (x, y, z).
'''
polar_rad = np.deg2rad(polar_deg)
azimuth_rad = np.deg2rad(azimuth_deg)
fov_rad = np.deg2rad(fov_deg)
polar_rad = -polar_rad # NOTE: Inverse of how used_x relates to x.
# Camera pose center:
cam_x = radius_m * np.cos(azimuth_rad) * np.cos(polar_rad)
cam_y = radius_m * np.sin(azimuth_rad) * np.cos(polar_rad)
cam_z = radius_m * np.sin(polar_rad)
# Obtain four corners of camera frustum, assuming it is looking at origin.
# First, obtain camera extrinsics (rotation matrix only):
camera_R = np.array([[np.cos(azimuth_rad) * np.cos(polar_rad),
-np.sin(azimuth_rad),
-np.cos(azimuth_rad) * np.sin(polar_rad)],
[np.sin(azimuth_rad) * np.cos(polar_rad),
np.cos(azimuth_rad),
-np.sin(azimuth_rad) * np.sin(polar_rad)],
[np.sin(polar_rad),
0.0,
np.cos(polar_rad)]])
# print('camera_R:', lo(camera_R).v)
# Multiply by corners in camera space to obtain go to space:
corn1 = [-1.0, np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
corn2 = [-1.0, -np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0)]
corn3 = [-1.0, -np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
corn4 = [-1.0, np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0)]
corn1 = np.dot(camera_R, corn1)
corn2 = np.dot(camera_R, corn2)
corn3 = np.dot(camera_R, corn3)
corn4 = np.dot(camera_R, corn4)
# Now attach as offset to actual 3D camera position:
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2)
corn_x1 = cam_x + corn1[0]
corn_y1 = cam_y + corn1[1]
corn_z1 = cam_z + corn1[2]
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2)
corn_x2 = cam_x + corn2[0]
corn_y2 = cam_y + corn2[1]
corn_z2 = cam_z + corn2[2]
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2)
corn_x3 = cam_x + corn3[0]
corn_y3 = cam_y + corn3[1]
corn_z3 = cam_z + corn3[2]
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2)
corn_x4 = cam_x + corn4[0]
corn_y4 = cam_y + corn4[1]
corn_z4 = cam_z + corn4[2]
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
return np.array([xs, ys, zs]).T
def run_demo(
device_idx=_GPU_INDEX,
ckpt='105000.ckpt',
config='configs/sd-objaverse-finetune-c_concat-256.yaml'):
print('sys.argv:', sys.argv)
if len(sys.argv) > 1:
print('old device_idx:', device_idx)
device_idx = int(sys.argv[1])
print('new device_idx:', device_idx)
device = f'cuda:{device_idx}'
config = OmegaConf.load(config)
# Instantiate all models beforehand for efficiency.
models = dict()
print('Instantiating LatentDiffusion...')
models['turncam'] = load_model_from_config(config, ckpt, device=device)
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
print('Instantiating StableDiffusionSafetyChecker...')
models['nsfw'] = StableDiffusionSafetyChecker.from_pretrained(
'CompVis/stable-diffusion-safety-checker').to(device)
print('Instantiating AutoFeatureExtractor...')
models['clip_fe'] = AutoFeatureExtractor.from_pretrained(
'CompVis/stable-diffusion-safety-checker')
# Reduce NSFW false positives.
# NOTE: At the time of writing, and for diffusers 0.12.1, the default parameters are:
# models['nsfw'].concept_embeds_weights:
# [0.1800, 0.1900, 0.2060, 0.2100, 0.1950, 0.1900, 0.1940, 0.1900, 0.1900, 0.2200, 0.1900,
# 0.1900, 0.1950, 0.1984, 0.2100, 0.2140, 0.2000].
# models['nsfw'].special_care_embeds_weights:
# [0.1950, 0.2000, 0.2200].
# We multiply all by some factor > 1 to make them less likely to be triggered.
models['nsfw'].concept_embeds_weights *= 1.07
models['nsfw'].special_care_embeds_weights *= 1.07
with open('instructions.md', 'r') as f:
article = f.read()
# NOTE: Examples must match inputs
# [polar_slider, azimuth_slider, radius_slider, image_block,
# preprocess_chk, scale_slider, samples_slider, steps_slider].
example_fns = ['1_blue_arm.png', '2_cybercar.png', '3_sushi.png', '4_blackarm.png',
'5_cybercar.png', '6_burger.png', '7_london.png', '8_motor.png']
num_examples = len(example_fns)
example_fps = [os.path.join(os.path.dirname(__file__), 'configs', x) for x in example_fns]
example_angles = [(-40.0, -65.0, 0.0), (-30.0, 90.0, 0.0), (45.0, -15.0, 0.0), (-75.0, 100.0, 0.0),
(-40.0, -75.0, 0.0), (-45.0, 0.0, 0.0), (-55.0, 90.0, 0.0), (-20.0, 125.0, 0.0)]
examples_full = [[*example_angles[i], example_fps[i], True, 3, 4, 50] for i in range(num_examples)]
print('examples_full:', examples_full)
# Compose demo layout & data flow.
demo = gr.Blocks(title=_TITLE)
with demo:
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=0.9, variant='panel'):
image_block = gr.Image(type='pil', image_mode='RGBA',
label='Input image of single object')
preprocess_chk = gr.Checkbox(
True, label='Preprocess image automatically (remove background and recenter object)')
# info='If enabled, the uploaded image will be preprocessed to remove the background and recenter the object by cropping and/or padding as necessary. '
# 'If disabled, the image will be used as-is, *BUT* a fully transparent or white background is required.'),
gr.Markdown('*Try camera position presets:*')
with gr.Row():
left_btn = gr.Button('View from the Left', variant='primary')
above_btn = gr.Button('View from Above', variant='primary')
right_btn = gr.Button('View from the Right', variant='primary')
with gr.Row():
random_btn = gr.Button('Random Rotation', variant='primary')
below_btn = gr.Button('View from Below', variant='primary')
behind_btn = gr.Button('View from Behind', variant='primary')
gr.Markdown('*Control camera position manually:*')
polar_slider = gr.Slider(
-90, 90, value=0, step=5, label='Polar angle (vertical rotation in degrees)')
# info='Positive values move the camera down, while negative values move the camera up.')
azimuth_slider = gr.Slider(
-180, 180, value=0, step=5, label='Azimuth angle (horizontal rotation in degrees)')
# info='Positive values move the camera right, while negative values move the camera left.')
radius_slider = gr.Slider(
-0.5, 0.5, value=0.0, step=0.1, label='Zoom (relative distance from center)')
# info='Positive values move the camera further away, while negative values move the camera closer.')
samples_slider = gr.Slider(1, 8, value=4, step=1,
label='Number of samples to generate')
with gr.Accordion('Advanced options', open=False):
scale_slider = gr.Slider(0, 30, value=3, step=1,
label='Diffusion guidance scale')
steps_slider = gr.Slider(5, 200, value=75, step=5,
label='Number of diffusion inference steps')
with gr.Row():
vis_btn = gr.Button('Visualize Angles', variant='secondary')
run_btn = gr.Button('Run Generation', variant='primary')
desc_output = gr.Markdown(
'The results will appear on the right.', visible=_SHOW_DESC)
with gr.Column(scale=1.1, variant='panel'):
vis_output = gr.Plot(
label='Relationship between input (green) and output (blue) camera poses')
gen_output = gr.Gallery(label='Generated images from specified new viewpoint')
gen_output.style(grid=2)
preproc_output = gr.Image(type='pil', image_mode='RGB',
label='Preprocessed input image', visible=_SHOW_INTERMEDIATE)
cam_vis = CameraVisualizer(vis_output)
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
fn=partial(main_run, models, device, cam_vis, 'gen'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider],
outputs=[desc_output, vis_output, preproc_output, gen_output],
cache_examples=True,
run_on_click=True,
)
gr.Markdown(article)
# NOTE: I am forced to update vis_output for these preset buttons,
# because otherwise the gradio plot always resets the plotly 3D viewpoint for some reason,
# which might confuse the user into thinking that the plot has been updated too.
# polar_slider.change(fn=partial(main_run, models, device, cam_vis, 'vis'),
# inputs=[polar_slider, azimuth_slider, radius_slider,
# image_block, preprocess_chk],
# outputs=[desc_output, vis_output, preproc_output],
# queue=False)
# azimuth_slider.change(fn=partial(main_run, models, device, cam_vis, 'vis'),
# inputs=[polar_slider, azimuth_slider, radius_slider,
# image_block, preprocess_chk],
# outputs=[desc_output, vis_output, preproc_output],
# queue=False)
# radius_slider.change(fn=partial(main_run, models, device, cam_vis, 'vis'),
# inputs=[polar_slider, azimuth_slider, radius_slider,
# image_block, preprocess_chk],
# outputs=[desc_output, vis_output, preproc_output],
# queue=False)
vis_btn.click(fn=partial(main_run, models, device, cam_vis, 'vis'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk],
outputs=[desc_output, vis_output, preproc_output],
queue=False)
run_btn.click(fn=partial(main_run, models, device, cam_vis, 'gen'),
inputs=[polar_slider, azimuth_slider, radius_slider,
image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider],
outputs=[desc_output, vis_output, preproc_output, gen_output])
# NEW:
preset_inputs = [image_block, preprocess_chk,
scale_slider, samples_slider, steps_slider]
preset_outputs = [polar_slider, azimuth_slider, radius_slider,
desc_output, vis_output, preproc_output, gen_output]
left_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, -90.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
above_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
-90.0, 0.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
right_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, 90.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
random_btn.click(fn=partial(main_run, models, device, cam_vis, 'rand_angles_gen',
-1.0, -1.0, -1.0),
inputs=preset_inputs, outputs=preset_outputs)
below_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
90.0, 0.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
behind_btn.click(fn=partial(main_run, models, device, cam_vis, 'angles_gen',
0.0, 180.0, 0.0),
inputs=preset_inputs, outputs=preset_outputs)
demo.launch(enable_queue=True)
if __name__ == '__main__':
fire.Fire(run_demo)