turn-the-cam-anonymous's picture
adding CLIP taming
1ed7deb
raw
history blame
10.1 kB
import argparse, os, sys, glob, math, time
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from main import instantiate_from_config, DataModuleFromConfig
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
from tqdm import trange
def save_image(x, path):
c,h,w = x.shape
assert c==3
x = ((x.detach().cpu().numpy().transpose(1,2,0)+1.0)*127.5).clip(0,255).astype(np.uint8)
Image.fromarray(x).save(path)
@torch.no_grad()
def run_conditional(model, dsets, outdir, top_k, temperature, batch_size=1):
if len(dsets.datasets) > 1:
split = sorted(dsets.datasets.keys())[0]
dset = dsets.datasets[split]
else:
dset = next(iter(dsets.datasets.values()))
print("Dataset: ", dset.__class__.__name__)
for start_idx in trange(0,len(dset)-batch_size+1,batch_size):
indices = list(range(start_idx, start_idx+batch_size))
example = default_collate([dset[i] for i in indices])
x = model.get_input("image", example).to(model.device)
for i in range(x.shape[0]):
save_image(x[i], os.path.join(outdir, "originals",
"{:06}.png".format(indices[i])))
cond_key = model.cond_stage_key
c = model.get_input(cond_key, example).to(model.device)
scale_factor = 1.0
quant_z, z_indices = model.encode_to_z(x)
quant_c, c_indices = model.encode_to_c(c)
cshape = quant_z.shape
xrec = model.first_stage_model.decode(quant_z)
for i in range(xrec.shape[0]):
save_image(xrec[i], os.path.join(outdir, "reconstructions",
"{:06}.png".format(indices[i])))
if cond_key == "segmentation":
# get image from segmentation mask
num_classes = c.shape[1]
c = torch.argmax(c, dim=1, keepdim=True)
c = torch.nn.functional.one_hot(c, num_classes=num_classes)
c = c.squeeze(1).permute(0, 3, 1, 2).float()
c = model.cond_stage_model.to_rgb(c)
idx = z_indices
half_sample = False
if half_sample:
start = idx.shape[1]//2
else:
start = 0
idx[:,start:] = 0
idx = idx.reshape(cshape[0],cshape[2],cshape[3])
start_i = start//cshape[3]
start_j = start %cshape[3]
cidx = c_indices
cidx = cidx.reshape(quant_c.shape[0],quant_c.shape[2],quant_c.shape[3])
sample = True
for i in range(start_i,cshape[2]-0):
if i <= 8:
local_i = i
elif cshape[2]-i < 8:
local_i = 16-(cshape[2]-i)
else:
local_i = 8
for j in range(start_j,cshape[3]-0):
if j <= 8:
local_j = j
elif cshape[3]-j < 8:
local_j = 16-(cshape[3]-j)
else:
local_j = 8
i_start = i-local_i
i_end = i_start+16
j_start = j-local_j
j_end = j_start+16
patch = idx[:,i_start:i_end,j_start:j_end]
patch = patch.reshape(patch.shape[0],-1)
cpatch = cidx[:, i_start:i_end, j_start:j_end]
cpatch = cpatch.reshape(cpatch.shape[0], -1)
patch = torch.cat((cpatch, patch), dim=1)
logits,_ = model.transformer(patch[:,:-1])
logits = logits[:, -256:, :]
logits = logits.reshape(cshape[0],16,16,-1)
logits = logits[:,local_i,local_j,:]
logits = logits/temperature
if top_k is not None:
logits = model.top_k_logits(logits, top_k)
# apply softmax to convert to probabilities
probs = torch.nn.functional.softmax(logits, dim=-1)
# sample from the distribution or take the most likely
if sample:
ix = torch.multinomial(probs, num_samples=1)
else:
_, ix = torch.topk(probs, k=1, dim=-1)
idx[:,i,j] = ix
xsample = model.decode_to_img(idx[:,:cshape[2],:cshape[3]], cshape)
for i in range(xsample.shape[0]):
save_image(xsample[i], os.path.join(outdir, "samples",
"{:06}.png".format(indices[i])))
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"-r",
"--resume",
type=str,
nargs="?",
help="load from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-c",
"--config",
nargs="?",
metavar="single_config.yaml",
help="path to single config. If specified, base configs will be ignored "
"(except for the last one if left unspecified).",
const=True,
default="",
)
parser.add_argument(
"--ignore_base_data",
action="store_true",
help="Ignore data specification from base configs. Useful if you want "
"to specify a custom datasets on the command line.",
)
parser.add_argument(
"--outdir",
required=True,
type=str,
help="Where to write outputs to.",
)
parser.add_argument(
"--top_k",
type=int,
default=100,
help="Sample from among top-k predictions.",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="Sampling temperature.",
)
return parser
def load_model_from_config(config, sd, gpu=True, eval_mode=True):
if "ckpt_path" in config.params:
print("Deleting the restore-ckpt path from the config...")
config.params.ckpt_path = None
if "downsample_cond_size" in config.params:
print("Deleting downsample-cond-size from the config and setting factor=0.5 instead...")
config.params.downsample_cond_size = -1
config.params["downsample_cond_factor"] = 0.5
try:
if "ckpt_path" in config.params.first_stage_config.params:
config.params.first_stage_config.params.ckpt_path = None
print("Deleting the first-stage restore-ckpt path from the config...")
if "ckpt_path" in config.params.cond_stage_config.params:
config.params.cond_stage_config.params.ckpt_path = None
print("Deleting the cond-stage restore-ckpt path from the config...")
except:
pass
model = instantiate_from_config(config)
if sd is not None:
missing, unexpected = model.load_state_dict(sd, strict=False)
print(f"Missing Keys in State Dict: {missing}")
print(f"Unexpected Keys in State Dict: {unexpected}")
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def get_data(config):
# get data
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup()
return data
def load_model_and_dset(config, ckpt, gpu, eval_mode):
# get data
dsets = get_data(config) # calls data.config ...
# now load the specified checkpoint
if ckpt:
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model,
pl_sd["state_dict"],
gpu=gpu,
eval_mode=eval_mode)["model"]
return dsets, model, global_step
if __name__ == "__main__":
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
ckpt = None
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
try:
idx = len(paths)-paths[::-1].index("logs")+1
except ValueError:
idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
logdir = "/".join(paths[:idx])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
print(f"logdir:{logdir}")
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*-project.yaml")))
opt.base = base_configs+opt.base
if opt.config:
if type(opt.config) == str:
opt.base = [opt.config]
else:
opt.base = [opt.base[-1]]
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
if opt.ignore_base_data:
for config in configs:
if hasattr(config, "data"): del config["data"]
config = OmegaConf.merge(*configs, cli)
print(ckpt)
gpu = True
eval_mode = True
show_config = False
if show_config:
print(OmegaConf.to_container(config))
dsets, model, global_step = load_model_and_dset(config, ckpt, gpu, eval_mode)
print(f"Global step: {global_step}")
outdir = os.path.join(opt.outdir, "{:06}_{}_{}".format(global_step,
opt.top_k,
opt.temperature))
os.makedirs(outdir, exist_ok=True)
print("Writing samples to ", outdir)
for k in ["originals", "reconstructions", "samples"]:
os.makedirs(os.path.join(outdir, k), exist_ok=True)
run_conditional(model, dsets, outdir, opt.top_k, opt.temperature)